Norm berechnen < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:05 Di 13.12.2005 | Autor: | Bastiane |
Hallo!
Also, eine konkrete Aufgabenstellung habe ich nicht, bzw. ist die Aufgabe noch etwas komplexer, aber mein Problem liegt in folgendem:
Ich muss [mm] \max_{||x||=1}||Ax|| [/mm] berechnen, einmal für die 2-Norm und einmal für die Unendlich-Norm.
Zuerst dachte ich, das wäre eine Matrixnorm, aber das stimmt ja gar nicht, oder? Ax ist ja ein Vektor, also ist es eine Vektornorm. Also hätte ich bei der 2-Norm die Wurzel aus den einzelnen Komponenten zum Quadrat. Aber wie mache ich das mit ||x||=1? Es kann sein, dass ich das nur irgendwie falsch verstehe, aber irgendwie muss ich das und das max doch betrachten, oder? Vielleicht könnte mir da jemand auf die Sprünge helfen?
Viele Grüße
Bastiane
P.S.: Das Gleiche muss ich dann noch mit dem Minimum machen, aber ich schätze, das geht dann genauso!?
|
|
|
|
Hallo Bastiane.
Mit [mm]\max_{||x||=1}||Ax||[/mm] ist die größte (Vektor-)Norm von Ax gesucht, die sich mit allen möglichen x, die eine Norm von 1 haben, erzeugen läßt. Jedenfalls gibt es offenbar bei deiner Aufgabenstellung verschiedene x, die zu unterschiedlichen Normen von Ax führen, wenn man sie variiert.
isVerbose?
|
|
|
|
|
Hallo Bastiane,
probier doch mal
[mm] \max_{||x||=1}||Ax|| [/mm] = [mm] \max_{x\neq 0} \bruch{||Ax||}{||x||} [/mm]
dann ist es ''einfach'' ein Maximierungsproblem fuer eine Funktion von
[mm] \IR^n [/mm] nach [mm] \|R. [/mm] Wenn man es fuer die 2-Norm hinschreibt, kann man noch
quadrieren - am Maximum sollte sich nichts aendern, da [mm] x\to x^2 [/mm] ja str. monoton steigend ist.
Gruss,
Mathias
|
|
|
|