matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieNorm auf C([a,b])
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Norm auf C([a,b])
Norm auf C([a,b]) < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Norm auf C([a,b]): Betrag des Integrals
Status: (Frage) beantwortet Status 
Datum: 13:22 So 01.05.2016
Autor: anil_prim

Aufgabe
Es sei [a,b] [mm] \subseteq [/mm] IR. Man zeige, dass durch [mm] ||f||_1 [/mm] := [mm] \integral_{a}^{b}{|f(x)| dx}, [/mm] f [mm] \in [/mm] C([a,b]), eine Norm auf C([a,b]) definiert ist.

Hallo,

es gilt: [mm] ||f||_1 [/mm] = [mm] (\summe_{k=1}^{n}|f_k|^1)^1 [/mm] = [mm] \summe_{k=1}^{n}|f_k| [/mm] = [mm] |f_1| [/mm] + [mm] |f_2| [/mm] + ... + [mm] |f_n| [/mm]

Nun wissen wir gerade nicht so recht weiter..
Ist der Ansatz überhaupt sinnvoll?

Und kann uns jemand definieren, was die Norm auf C([a,b]) bedeutet?

Viele Grüße,
Anil



        
Bezug
Norm auf C([a,b]): Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 So 01.05.2016
Autor: hippias


> Es sei [a,b] [mm]\subseteq[/mm] IR. Man zeige, dass durch [mm]||f||_1[/mm] :=
> [mm]\integral_{a}^{b}{|f(x)| dx},[/mm] f [mm]\in[/mm] C([a,b]), eine Norm auf
> C([a,b]) definiert ist.
>  Hallo,
>
> es gilt: [mm]||f||_1[/mm] = [mm](\summe_{k=1}^{n}|f_k|^1)^1[/mm] =
> [mm]\summe_{k=1}^{n}|f_k|[/mm] = [mm]|f_1|[/mm] + [mm]|f_2|[/mm] + ... + [mm]|f_n|[/mm]
>
> Nun wissen wir gerade nicht so recht weiter..
>  Ist der Ansatz überhaupt sinnvoll?

Nein, da die von Dir benutzte Rechenvorschrift ganz anders ist als die in der Aufgabenstellung gegebene.

>  
> Und kann uns jemand definieren, was die Norm auf C([a,b])
> bedeutet?

Anschaulich kann man die Norm eines Vektor als seine Länge oder seinen Abstand vom Koordinatenursprung deuten. Wie sie definiert ist, kannst Du in Deiner Vorlesungsmitschrift oder jedem Buch über Analysis finden. Teile mit welche Bedingungen erfüllt sein müssen, damit eine Norm vorliegt. Dann können wir überlegen, wie Du überprüfen kannst, ob sie für die Abbildung aus der Aufgabenstellung erfüllt sind.

>
> Viele Grüße,
>  Anil
>  
>  


Bezug
        
Bezug
Norm auf C([a,b]): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Mo 02.05.2016
Autor: anil_prim

Hallo,

die Norm ist bei uns im Skript folgendermaßen definiert d(z,q) = [mm] ||z-q||_p [/mm] = [mm] \summe_{j=1}^{m} |z_j-q_j|^p)^\bruch{1}{p}. [/mm]

Wir haben bei der Aufgabe allerdings keinen Abstand gegeben, oder wie soll man [mm] ||f||_1 [/mm] verstehen?

Außerdem haben wir im Skript nichts zu der Verbindung von Norm und Integral gefunden. Muss man vllt das Integral irgendwie umschreiben?



Bezug
                
Bezug
Norm auf C([a,b]): Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Mo 02.05.2016
Autor: fred97


> Hallo,
>
> die Norm ist bei uns im Skript folgendermaßen definiert
> d(z,q) = [mm]||z-q||_p[/mm] = [mm]\summe_{j=1}^{m} |z_j-q_j|^p)^\bruch{1}{p}.[/mm]

ja, das ist eine Metrik auf [mm] \IK^m [/mm]

in der Aufgabe liegt aber ein völlig anderer Raum zugrunde,  der Raum der stetigen Funktionen auf [a,b]

du sollst zeigen, dass auf diesem Raum durch [mm] ||f||_1 [/mm] eine Norm definiert wird

fred

>  
> Wir haben bei der Aufgabe allerdings keinen Abstand
> gegeben, oder wie soll man [mm]||f||_1[/mm] verstehen?
>  
> Außerdem haben wir im Skript nichts zu der Verbindung von
> Norm und Integral gefunden. Muss man vllt das Integral
> irgendwie umschreiben?
>
>  


Bezug
                        
Bezug
Norm auf C([a,b]): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Mo 02.05.2016
Autor: anil_prim

Wie ist denn der Raum der stetigen Funktionen definiert?
finden dazu leider nichts im Skript... :(

Bezug
                                
Bezug
Norm auf C([a,b]): Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Mo 02.05.2016
Autor: fred97


> Wie ist denn der Raum der stetigen Funktionen definiert?
>  finden dazu leider nichts im Skript... :(

das sind alle reellwertigen Funktionen,  die auf [a,b] definiert und stetig sind

fred


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]