matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenNorm. Vektorräume/Folgenräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Norm. Vektorräume/Folgenräume
Norm. Vektorräume/Folgenräume < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Norm. Vektorräume/Folgenräume: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:33 Di 08.06.2010
Autor: Gratwanderer

Aufgabe
Wir definieren die folgenden Teilmengen von [mm] \IR^\infty [/mm] := [mm] \{f: \IN^+ \to \IR\} [/mm] = [mm] \IR^{\IN+}: [/mm]

a) [mm] l_\infty [/mm] := [mm] \{(x_1,x_2,x_3,...);x_k \in \IR \mbox{ für k} \in \IN^+ \mbox{und sup}_{k \in \IN^+} |x_k| \in \IR\} [/mm]
b) c := [mm] \{(x_1,x_2,x_3,...);x_k \in \IR \mbox{ für k} \in \IN^+ \mbox{und lim}_{k \to \infty} x_k \in \IR\} [/mm]
c) [mm] c_0 [/mm] := [mm] \{(x_1,x_2,x_3,...);x_k \in \IR \mbox{ für k} \in \IN^+ \mbox{und lim}_{k \to \infty} x_k = 0} [/mm]
d) [mm] c_{00} [/mm] := [mm] \{(x_1,x_2,x_3,...);x_k \in \IR \mbox{ für k} \in \IN^+ \mbox{und} \exists N \in \IN \mbox{mit} k > N \Rightarrow x_k = 0\} [/mm]

1. Zeigen Sie, dass [mm] (l_\infty,+,\IR,*,||.||_\infty) [/mm] ein normierter Vektorraum ist.

2. Gilt dies auch wenn man [mm] l_\infty [/mm] ersetzt durch c, [mm] c_0 [/mm] bzw. [mm] c_{00}? [/mm]

Hallo,

versuche gerade die Aufgabe zu lösen. Bin mir jedoch nicht ganz sicher ob das so richtig ist.

Zunächst eine Verständnisfrage: Es handelt sich bei den Mengen um Teilmengen des [mm] \IR^\infty, [/mm] also des unendlich dimensionalen Vektorraums? In die Vektoren wurden Folgen reingeschrieben, sodass jedes Folgenglied einen Eintrag im Vektor erhält?

zu 1:

zzg: [mm] l_\infty [/mm] ist ein normierter Vektorraum.

Man zeigt doch, dass es sich bei [mm] l_\infty [/mm] um einen Vektorraum und bei [mm] ||.||_\infty [/mm] (welche als Maximumsnorm definiert wurde) um eine Norm innerhalb dieses Vektorraums handelt?

Da für die einzelnen Einträge jedes Vektors aus [mm] l_\infty [/mm] gilt [mm] \mbox{sup}_{k \in \IN+} |x_k| \in \IR [/mm] ist jede Folge [mm] x_k [/mm] nach oben und nach unten hin beschränkt. Ist das so richtig? Also steckt in jedem Vektor eine beschränkte Folge [mm] x_k. [/mm] Die beschränkten Folgen bilden einen Vektorraum, somit müsste [mm] l_\infty [/mm] ein VR sein. Bleibt nur noch zzg. dass [mm] ||.||_\infty [/mm] eine Norm auf [mm] l_\infty [/mm] ist.

1.) Definitheit

sei x [mm] \in l_\infty [/mm] dann folgt für x=0=(0,0,0,...), dass [mm] ||x||_\infty [/mm] = [mm] max\{|0|,|0|,|0|,...\}=0 [/mm] und für [mm] ||x||_\infty [/mm] = 0 folgt [mm] \mbox{sup}_{k \in \IN+} |x_k| [/mm] = 0, somit x=0.

2.) Homogenität

sei x [mm] \in l_\infty, [/mm] t [mm] \in \IR, [/mm] dann folgt [mm] ||t*x||_\infty [/mm] = [mm] max\{|tx_1|,|tx_2|,|tx_3|,...\} [/mm] = [mm] \mbox{sup}_{k \in \IN+} |tx_k| [/mm] = [mm] |t|*\mbox{sup}_{k \in \IN+} |x_k| [/mm] = |t| [mm] ||x||_\infty [/mm]

3. Dreiecksungleichung

sei x,y [mm] \in l_\infty [/mm]

[mm] ||x+y||_\infty [/mm] = [mm] max\{x_k+y_k\} [/mm] = [mm] \mbox{sup}_{k \in \IN+}|x_k+y_k| \le \mbox{sup}_{k \in \IN+}(|x_k|+|y_k|) [/mm] = [mm] ||x||_\infty [/mm] + [mm] ||y||_\infty [/mm]

zu 2:

da bin ich leider völlig überfragt. Ich glaube auch nicht dass ich Aufg. 1 richtig gemacht habe :)

Vielen Dank im Voraus für eure Hilfe!

Gruß,

Gratwanderer

        
Bezug
Norm. Vektorräume/Folgenräume: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 10.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]