matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisNochmal Isolierte Singularität
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Nochmal Isolierte Singularität
Nochmal Isolierte Singularität < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nochmal Isolierte Singularität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Mi 01.08.2007
Autor: Jonez

Aufgabe
Berechne das Kurvenintegral [mm]\integral_{\gamma}{f(z) dz}[/mm] für die Funktion [mm]f(z) := \bruch{1}{z^{2} + 2iz + 3}[/mm] und [mm] \gamma [/mm] gleich dem positiv orientierten Kreis um 0 mit Radius 2.

Hi,

wie ich oben stehende Aufgabe löse, weiß ich eigentlich schon so ungefähr. Also ich berechne erstmal die isolierten Singularitäten und berechne das Integral dann mit dem Residuensatz.

Mein Problem ist jetzt nur, dass ich das mit der Ordnung von Polen nicht ganz so verstanden hab.
Die Singularitäten rechne ich entweder mit der Mitternachts- oder der PQ-Formel aus, und dabei kommen als iso. Sing. raus:
[mm]z_{0} = -3i[/mm] und [mm]z_{1} = i[/mm].

Da nur [mm]z_{1} = i[/mm] innerhalb des Kreises um 0 mit Raidus 2 liegt, kann ich die iso. Sing. in [mm]z_{0}[/mm] ja ignorieren.
Aber welche Ordnung hat dieser Pol bei [mm]z_{1} = i[/mm] jetzt?
Eigentlich würde ich sagen Ordnung 2, da ich ja [mm]f(z) := \bruch{1}{z^{2} + ...}[/mm] hab, aber dann bekomm ich kein gescheites Residuum raus...

Kann mir da jemand helfen?
Danke,
Jonas

        
Bezug
Nochmal Isolierte Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Mi 01.08.2007
Autor: rainerS

Hallo Jonas,

Regel bei rationalen Funktionen: die Ordnung der Pole ist die Vielfachheit der entsprechenden Nullstellen des Nenners minus die Vielfachkeit der Nullstellen des Zählers. Das bekommst du sofort aus dem Fundamentalsatz der Algebra: zerlege Zähler und Nenner in Linearfaktoren und dividiere gleiche Faktoren aus (Hebung der Singularität).

In deinem Fall ist [mm]f(z) = \bruch{1}{(z-z_0)(z-z_1)}[/mm], also hat dein Nenner hat nur einfache Nullstellen, also sind beides Pole erster Ordnung.

Du siehst an dieser Form auch, dass das Residuum im Punkt [mm]z_1[/mm] gerade [mm]\bruch{1}{z_1-z_0}[/mm] ist.

Grüße
  Rainer

Bezug
                
Bezug
Nochmal Isolierte Singularität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:16 Mi 01.08.2007
Autor: Jonez

Ha perfekt, Danke !!!
Jetzt hab ich das auch endlich mal verstanden :)

Danke !!,
Jonas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]