matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenNiveaumenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Niveaumenge
Niveaumenge < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Niveaumenge: Korrektur
Status: (Frage) beantwortet Status 
Datum: 00:30 Mi 05.11.2014
Autor: Melisa

Aufgabe
Betrachten Sie die Funktion f: [mm] \IR^2->\IR [/mm] die gegeben ist durch

f(x,y) = [mm] y^2-x^2+x^4 [/mm]

Betrachten Sie zudem noch die Funktion [mm] g:[-1,1]->\IR [/mm]

g(t) = [mm] t\wurzel{1-t^2} [/mm]

i) Zeigen Sie, dass die Niveaumenge [mm] N_{f}(0) [/mm] von f zum Niveau 0 gegeben ist durch die Vereinigung

{(t,g(t): [mm] t\in[-1,1] [/mm] } [mm] \cup [/mm] { (t,-g(t): [mm] t\in[-1,1] [/mm] }

ii) Berechnen Sie zudem fuer jedes [mm] t\in(-1,1) [/mm] das Skalarprodukt
    
             [mm] \left\langle grad f(t,g(t)) ; (1,g'(t))^T \right\rangle [/mm]


Hallo an alle,

ich moechte die Aufgabe loesen und braeuchte Ihre Hilfe, moechte wissen ob ich es richtig gemacht habe oder nicht

[mm] i)N_{f}(0) [/mm] = { [mm] (x,y)\in\IR| [/mm] f(x,y) = 0 }
=>
[mm] N_{f}(0) [/mm] = { [mm] (x,y)\in\IR| [/mm]  y = [mm] \pm \wurzel{x^2-x^4} [/mm] }
=>
[mm] N_{f}(0) [/mm] = { [mm] (x,y)\in[-1,1] [/mm] }

Da [mm] t\in[-1,1] [/mm] => t kann maximal 1 und mininal -1 sein
wenn t = -1 => g(-1) = 0
wenn t = 1 => g(1) = 0
=>
[mm] (t,g(t))\in[-1,1] [/mm]
das Gleiche gilt fuer  (t,-g(t))
=>
[mm] N_{f}(0) [/mm] ist gegeben durch
{(t,g(t): [mm] t\in[-1,1] [/mm] } [mm] \cup [/mm] { (t,-g(t): [mm] t\in[-1,1] [/mm] }

ii)
gradient von f(t,t(g)) = [mm] \vektor{0 \\ 0} [/mm]
und
g'(t) = [mm] (1-2t^2)/(\wurzel{1-t^2} [/mm]
und Skalarprodukt von diesen 2 Vektoren sind immer 0 fuer alle [mm] t\in(-1,1) [/mm]

Vielen Dank im Voraus,
LG



        
Bezug
Niveaumenge: Antwort
Status: (Antwort) fertig Status 
Datum: 07:04 Mi 05.11.2014
Autor: fred97


> Betrachten Sie die Funktion f: [mm]\IR^2->\IR[/mm] die gegeben ist
> durch
>  
> f(x,y) = [mm]y^2-x^2+x^4[/mm]
>  
> Betrachten Sie zudem noch die Funktion [mm]g:[-1,1]->\IR[/mm]
>  
> g(t) = [mm]t\wurzel{1-t^2}[/mm]
>  
> i) Zeigen Sie, dass die Niveaumenge [mm]N_{f}(0)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

von f zum

> Niveau 0 gegeben ist durch die Vereinigung
>  
> {(t,g(t): [mm]t\in[-1,1][/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} [mm]\cup[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{ (t,-g(t): [mm]t\in[-1,1][/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  
> ii) Berechnen Sie zudem fuer jedes [mm]t\in(-1,1)[/mm] das
> Skalarprodukt
>      
> [mm]\left\langle grad f(t,g(t)) ; (1,g'(t))^T \right\rangle[/mm]
>  
> Hallo an alle,
>  
> ich moechte die Aufgabe loesen und braeuchte Ihre Hilfe,
> moechte wissen ob ich es richtig gemacht habe oder nicht
>  
> [mm]i)N_{f}(0)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= { [mm](x,y)\in\IR|[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

f(x,y) = 0 }

>  =>
>  [mm]N_{f}(0)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= { [mm](x,y)\in\IR|[/mm]  y = [mm]\pm \wurzel{x^2-x^4}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  =>
>  [mm]N_{f}(0)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= { [mm](x,y)\in[-1,1][/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

Das ist doch Unsinn !!


>  
> Da [mm]t\in[-1,1][/mm] => t kann maximal 1 und mininal -1 sein
>  wenn t = -1 => g(-1) = 0

>  wenn t = 1 => g(1) = 0

>  =>
>  [mm](t,g(t))\in[-1,1][/mm]


Quatsch. Rechts steht eine Teilmengevon [mm] \IR [/mm] und linksein Element des [mm] \IR^2 [/mm]  !!!


>  das Gleiche gilt fuer  (t,-g(t))
>  =>
>  [mm]N_{f}(0)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

ist gegeben durch

>   {(t,g(t): [mm]t\in[-1,1][/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} [mm]\cup[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{ (t,-g(t): [mm]t\in[-1,1][/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  

Gezeigt hast Du nichts !

Für (x,y) \in N_f(0) gilt y = [mm]\pm \wurzel{x^2-x^4}[/mm][mm] =\pm |x|*\wurzel{1-x^2}=g(|t|) [/mm]

Hilft das ?


> ii)
>  gradient von f(t,t(g)) = [mm]\vektor{0 \\ 0}[/mm]

Das stimmt.


>  und
>  g'(t) = [mm](1-t^4)/(\wurzel{1-t^2}[/mm]

Das stimmt nicht


FRED

>  und Skalarprodukt von diesen 2 Vektoren sind immer 0 fuer
> alle [mm]t\in(-1,1)[/mm]
>  
> Vielen Dank im Voraus,
>  LG
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]