matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraNilpotenz/Jordan Normalform
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Nilpotenz/Jordan Normalform
Nilpotenz/Jordan Normalform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nilpotenz/Jordan Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Mo 05.05.2008
Autor: maxi85

Aufgabe
Zeigen sie, die folgenden Matrizen sind nilpotent und berechnen sie deren jordansche Normalform.

a) [mm] A=\pmat{ 0 & 1 & 1 \\ 0 & -1 & -1 \\ 1 & 2 & 1} [/mm]

b) [mm] A=\pmat{ 4 & 6 & 8 & 2 \\ -2 & -3 & -4 & -1 \\ 0 & -1 & 0 & 1 \\ -2 & -3 & -4 & -1} [/mm]

Hallo erstmal,

nur ne kleine Frage, muss ich hier wirklich zum nachweis der Nilpotenz die Matrizen solange auf sich selbst anweden bis die Nullmatrix rauskommt oder gibts noch nen anderen Weg nilpotenz zu beweisen?


danke im vorraus, Maxi

        
Bezug
Nilpotenz/Jordan Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Mo 05.05.2008
Autor: MathePower

Hallo maxi85,

> Zeigen sie, die folgenden Matrizen sind nilpotent und
> berechnen sie deren jordansche Normalform.
>  
> a) [mm]A=\pmat{ 0 & 1 & 1 \\ 0 & -1 & -1 \\ 1 & 2 & 1}[/mm]
>  
> b) [mm]A=\pmat{ 4 & 6 & 8 & 2 \\ -2 & -3 & -4 & -1 \\ 0 & -1 & 0 & 1 \\ -2 & -3 & -4 & -1}[/mm]
>  
> Hallo erstmal,
>  
> nur ne kleine Frage, muss ich hier wirklich zum nachweis
> der Nilpotenz die Matrizen solange auf sich selbst anweden
> bis die Nullmatrix rauskommt oder gibts noch nen anderen
> Weg nilpotenz zu beweisen?

Da wird wohl kein anderer Weg dran vorbeiführen.


Siehe dazu hier: []Nilpotente Matrix

>
>
> danke im vorraus, Maxi

Gruß
MathePower

Bezug
                
Bezug
Nilpotenz/Jordan Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:26 Fr 09.05.2008
Autor: maxi85

hab gerad bissl zeitmangel daher mach ich erstmal nur die nilpotenz. würde mich aber sehr freuen wenn dann irgendwann noch wer gucken kann ob ich das mit der jordanschen normalform richtig gemacht hab.

also

a)  [mm] A=\pmat{ 0 & 1 & 1 \\ 0 & -1 & -1 \\ 1 & 2 & 1} A^2=\pmat{ 1 & 1 & 0 \\ -1 & -1 & 0 \\ 1 & 1 & 0} A^3=\pmat{ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0} [/mm]

b)  [mm] A=\pmat{ 4 & 6 & 8 & 2 \\ -2 & -3 & -4 & -1 \\ 0 & -1 & 0 & 1 \\ -2 & -3 & -4 & -1} A^2=\pmat{ 0 & -8 & 0 & 8 \\ 0 & 4 & 0 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & -4} A^3=\pmat{ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0} [/mm]

danke im vorraus

Bezug
                        
Bezug
Nilpotenz/Jordan Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Fr 09.05.2008
Autor: angela.h.b.

Hallo,

ja, Du hast das richtig gemacht, beachte aber unbedingt freds Hinweis: nilpotente Matrizen haben als einzigen Eigenwert die 0.

Mit diesem Wissen kannst Du Dir die Multipliziererei ersparen, sie könnte ja u.U. recht aufwendig sein, wenn Du eine 15x15_Matrix A hast, für die erstmals [mm] A^{14} [/mm] die Nullmatrix ist.

Gruß v. Angela

Bezug
                                
Bezug
Nilpotenz/Jordan Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Mi 14.05.2008
Autor: maxi85

So familientreffen überstanden und wieder rein ins Matheleben. Also ich hab jetzt berechnet:

a)

rang [mm] A^3=0=\delta_{4}(A) [/mm]
rang [mm] A^2=1=\delta_{3}(A)+2*\delta_{4}(A) [/mm]
rang [mm] A^1=2=\delta_{2}(A)+2*\delta_{3}(A) [/mm]
         [mm] 3=\delta_{1}(A)+2*\delta_{2}(A)+3*\delta_{3}(A) [/mm]

==> [mm] A=J_{3}(0)=\pmat{ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 } [/mm]


b)

rang [mm] A^3=0=\delta_{4}(A) [/mm]
rang [mm] A^2=1=\delta_{3}(A)+2*\delta_{4}(A) [/mm]
rang [mm] A^1=2=\delta_{2}(A)+2*\delta_{3}(A) [/mm]
         [mm] 4=\delta_{1}(A)+2*\delta_{2}(A)+3*\delta_{3}(A) [/mm]

==> [mm] A=J_{1}(0) \oplus J_{3}(0)=\pmat{ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 } [/mm]


wäre nett wenn jemand von euch mal drüberschaun könnte, danke im vorraus, die maxi

Bezug
                                        
Bezug
Nilpotenz/Jordan Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Mi 14.05.2008
Autor: MathePower

Hallo maxi85,


> So familientreffen überstanden und wieder rein ins
> Matheleben. Also ich hab jetzt berechnet:
>  
> a)
>
> rang [mm]A^3=0=\delta_{4}(A)[/mm]
>  rang [mm]A^2=1=\delta_{3}(A)+2*\delta_{4}(A)[/mm]
>  rang [mm]A^1=2=\delta_{2}(A)+2*\delta_{3}(A)[/mm]
>           [mm]3=\delta_{1}(A)+2*\delta_{2}(A)+3*\delta_{3}(A)[/mm]
>  
> ==> [mm]A=J_{3}(0)=\pmat{ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 }[/mm]
>  

Stimmt. [ok]

>
> b)
>
> rang [mm]A^3=0=\delta_{4}(A)[/mm]
>  rang [mm]A^2=1=\delta_{3}(A)+2*\delta_{4}(A)[/mm]
>  rang [mm]A^1=2=\delta_{2}(A)+2*\delta_{3}(A)[/mm]
>           [mm]4=\delta_{1}(A)+2*\delta_{2}(A)+3*\delta_{3}(A)[/mm]
>  
> ==> [mm]A=J_{1}(0) \oplus J_{3}(0)=\pmat{ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 }[/mm]

Stimmt auch. [ok]

Da A in beiden Fällen vom Nilpotenzgrad 3 ist, ist der längste Jordanblock von der Größe 3.

Im Fall a) ist das dann schon die Jordannormalform. Für den Fall b) gibt es dann für den zweiten Jordanblok nur noch eine Möglichkeit.

>  
>
> wäre nett wenn jemand von euch mal drüberschaun könnte,
> danke im vorraus, die maxi

Gruß
MathePower

Bezug
        
Bezug
Nilpotenz/Jordan Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Mo 05.05.2008
Autor: fred97

eine Matrix ist genau dann nilpotent, wenn sie nur den Eigenwert 0 hat

Bezug
                
Bezug
Nilpotenz/Jordan Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Mi 14.05.2008
Autor: maxi85

Danke, werds mir merken!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]