matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraNilpotenter Endomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Nilpotenter Endomorphismus
Nilpotenter Endomorphismus < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nilpotenter Endomorphismus: Tipp, Lösungsvorschlag
Status: (Frage) beantwortet Status 
Datum: 18:39 So 27.04.2008
Autor: Leipziger

Aufgabe
Sei f:V→V ein nilpotenter Endomorphismus und W⊂V ein echter K-linearer f-invarianter

Unterraum (d.h. W≠V). Zeigen Sie, dann liegt W echt in f^(-1)(W) und

f^(-1)(W) ist ein f-invarianter Unterraum.

Ich weiß nicht wie ich zeigen soll, dass
"W echt in f^(-1)(W)" liegt.

Kann mir jemand einen Ansatz geben?




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Nilpotenter Endomorphismus: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 18:50 So 27.04.2008
Autor: blascowitz

Hallo
zuerst einmal würde ich mir aufschreibe was du schon weißt. Also [mm] $f:V\rightarrow [/mm] V$ ist nilpotent, d.h. [mm] \exists n_{0} \in \IN, \forall n>n_{0}: f^n=0. [/mm] Weiter weißt du dass W [mm] \subset [/mm] V ein f-invarianter Unterraum ist d.h. f(w) [mm] \in [/mm] W [mm] \forall [/mm] w [mm] \in [/mm] W.

Weiter weißt du das f injektiv ist(warum ??)

Jetzt kannst du den ersten Teil der Aufgabe schnell erledigen

schreibe mal für eine beliebiges w [mm] \in [/mm] W: [mm] w=f^{-1}f(w) [/mm] und nutze dann die Invarianz

Bezug
                
Bezug
Nilpotenter Endomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 So 27.04.2008
Autor: Leipziger

Kannst du mir kurz mathematisch erklären was invariant ist, damit ich das nachvollziehen kann?

Bezug
                        
Bezug
Nilpotenter Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 So 27.04.2008
Autor: piet.t

Hallo,

was es mathematisch bedeutet hat blascowitz ja schon hingeschrieben:

> $f(w) [mm] \in [/mm] W [mm] \forall [/mm] w [mm] \in [/mm] W$

Anschaulich gesporchen heißt es, dass für jeden Vektor aus W auch der Bildvektor wieder in W liegt.

Das hilft uns schon mal zu zeigen, dass $W [mm] \subseteq f^{-1}(W)$. [/mm] Angenommen, das wäre nicht der Fall, dann gäbe es ein [mm] $w\in [/mm] W$ mit $w [mm] \notin f^{-1}(W)$. [/mm] Versuche das einmal, das letzte so umzuformuleiren, dass eine Aussage über f(w) herauskommt. Was bedeutet das für die f-Invarianz von W??

Der zweite Schritt ist es zu zeige, dass in [mm] $f^{-1}(W)$ [/mm] auch Vektoren $v [mm] \in [/mm] V [mm] \setminus [/mm] W$ vorkommen. Dazu nimm einfach mal ein beliebiges $v [mm] \in [/mm] V [mm] \setminus [/mm] W$ und wende f wiederholt darauf an.

Zu zeigen, dass $f^-1(W)$ f-invariant ist, ist dann richtig einfach, denn was gilt denn für [mm] $f(f^{-1}(W))$? [/mm]

Gruß

piet

Bezug
                                
Bezug
Nilpotenter Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:23 So 27.04.2008
Autor: Leipziger

Dankeschön, für die schnelle Hilfe, werde es mir Morgen in Ruhe anschauen!

Bezug
                
Bezug
Nilpotenter Endomorphismus: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 21:57 So 27.04.2008
Autor: piet.t

Hallo,

>
> Weiter weißt du das f injektiv ist(warum ??)

Ich würde sagen, f ist sicher nicht injektiv, da es mehrere v mit f(v) = 0 gibt....

>  
> Jetzt kannst du den ersten Teil der Aufgabe schnell
> erledigen
>  
> schreibe mal für eine beliebiges w [mm]\in[/mm] W: [mm]w=f^{-1}f(w)[/mm] und
> nutze dann die Invarianz

Auch hier muss man aufpassen: ein [mm] f^{-1} [/mm] für Vektoren gibt es nicht (denn f ist ja nicht bijektiv, noch nicht mal injektiv), nur für Teilmengen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]