matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraNilpotente Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Nilpotente Matrizen
Nilpotente Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nilpotente Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Sa 12.11.2005
Autor: SirBigMac

Tag zusammen!

Ich hab da ne Aufgabe die ich lösen muss, ich weiß zwar so ganz grob was nilpotent und unipotent ist, aber was sie über eine Matrix aussagen bzw. wie man mit den Begriffen umgeht weiß ich nicht.

Deshalb wär ich euch sehr verbunden, wenn mir jemand zu folgenden beiden Aufgaben nen Tipp oder Lösungshinweis sagen könnte.

Vielen Dank! :-)

1) Bestimmen Sie alle nilpotenten 3x3-Matrizen, die obere Dreiecksmatrizen sind.
2) Bestimmen Sie alle unipotenten 3x3-Matrizen, die obere Dreiecksmatrizen sind.


Grüße
SirBigMac

        
Bezug
Nilpotente Matrizen: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Sa 12.11.2005
Autor: Bastiane

Hallo!

> Ich hab da ne Aufgabe die ich lösen muss, ich weiß zwar so
> ganz grob was nilpotent und unipotent ist, aber was sie
> über eine Matrix aussagen bzw. wie man mit den Begriffen
> umgeht weiß ich nicht.
>  
> Deshalb wär ich euch sehr verbunden, wenn mir jemand zu
> folgenden beiden Aufgaben nen Tipp oder Lösungshinweis
> sagen könnte.
>  
> Vielen Dank! :-)
>  
> 1) Bestimmen Sie alle nilpotenten 3x3-Matrizen, die obere
> Dreiecksmatrizen sind.
>  2) Bestimmen Sie alle unipotenten 3x3-Matrizen, die obere
> Dreiecksmatrizen sind.

Also, ich würde eine allgemeine obere Dreiecksmatrix nehmen (also gefüllt mit a, b, c, usw. und unterhalb der Diagonalen nur Nullen), und dann würde ich mal die Matrix immer mit sich selbst multiplizieren, so dass du dann eine Einschränkung für a,b,c usw. erhältst, dass die Matrix nilpotent sein kann.

Was unipotent ist, weiß ich gerade nicht.

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Nilpotente Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Sa 12.11.2005
Autor: Leopold_Gast

Zeige zunächst durch Induktion für ganzzahliges [mm]n \geq 1[/mm]:

[mm]\begin{pmatrix} \lambda_1 & * & * \\ 0 & \lambda_2 & * \\ 0 & 0 & \lambda_3 \end{pmatrix}^n = \begin{pmatrix} \lambda_1^{\ n} & * & * \\ 0 & \lambda_2^{\ n} & * \\ 0 & 0 & \lambda_3^{\ n} \end{pmatrix}[/mm]

Hierbei stehen die Punkte für irgendwelche nicht weiter interessierenden Matrixelemente. Versuche damit, notwendige Bedingungen für [mm]\lambda_1, \lambda_2, \lambda_3[/mm] herzuleiten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]