matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperNilpotente Lie-Gruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Nilpotente Lie-Gruppen
Nilpotente Lie-Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nilpotente Lie-Gruppen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:07 Fr 15.08.2008
Autor: hhashavti

Hallo. Ich lese gerade ein Buch über Lie-Algebren und Lie-Gruppen und komme an einer Stelle nicht weiter und wäre daher sehr dankbar, wenn mir einer von euch dabei helfen könnte.

Lemma

Sei K ein Körper, und sei [mm] V\not=\{0\} [/mm] ein K-Vektorraum, g<gl(V) und X [mm] \in [/mm] g. Wenn X [mm] \in [/mm] gl(V) nilpotent ist, dann ist auch ad(X): g [mm] \to [/mm] g nilpotent.


Anmerkung: ad(X) wird vorher für ein gegebenes X definiert als:

ad(X):g [mm] \to [/mm] g, Y [mm] \mapsto [/mm] [X,Y], wobei [X,Y] die Lie-Klammer ist.

Frage:
1.) Warum schreiben die Autoren einmal X [mm] \in [/mm] g, ein anderes Mal aber X [mm] \in [/mm] gl(V)?
2.) Kann X überhaupt nilpotent sein? So wie ich das verstehe, ist X oben nicht als Menge, sonders als einzelnes Element einer Menge gemeint, und - wenn ich alles richtig verstanden habe - kann man von "Nilpotenz eines einzelnen Elements" gar nicht sprechen, oder?

Danke im Voraus für eure Hilfe,

hhashavti

        
Bezug
Nilpotente Lie-Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 Sa 16.08.2008
Autor: felixf

Hallo

> Lemma
>  
> Sei K ein Körper, und sei [mm]V\not=\{0\}[/mm] ein K-Vektorraum,
> g<gl(V) und X [mm]\in[/mm] g. Wenn X [mm]\in[/mm] gl(V) nilpotent ist, dann
> ist auch ad(X): g [mm]\to[/mm] g nilpotent.

Wann ist denn ein Element einer Lie-Gruppe nilpotent, und wann ist ein Homomorphismus nilpotent?

> Anmerkung: ad(X) wird vorher für ein gegebenes X definiert
> als:
>  
> ad(X):g [mm]\to[/mm] g, Y [mm]\mapsto[/mm] [X,Y], wobei [X,Y] die Lie-Klammer
> ist.
>  
> Frage:
>  1.) Warum schreiben die Autoren einmal X [mm]\in[/mm] g, ein
> anderes Mal aber X [mm]\in[/mm] gl(V)?

Vielleicht weil die Definition, dass ein Element nilpotent ist, davon abhaengt, als Element welcher Gruppe man es betrachtet?

>  2.) Kann X überhaupt nilpotent sein? So wie ich das
> verstehe, ist X oben nicht als Menge, sonders als einzelnes
> Element einer Menge gemeint, und - wenn ich alles richtig
> verstanden habe - kann man von "Nilpotenz eines einzelnen
> Elements" gar nicht sprechen, oder?

Das haengt von der Definition bzw. den Definitionen von nilpotent ab.

Da ich diese fuer Lie-Gruppen nicht kenne kann ich dir dabei nicht weiterhelfen. Vielleicht hilft dir meine Antwort trotzdem etwas weiter :) Was du auf jeden Fall machen solltest, ist im Buch nach den verschiedenen Definitionen von nilpotent suchen.

LG Felix


Bezug
                
Bezug
Nilpotente Lie-Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 Sa 16.08.2008
Autor: hhashavti

Tut mir Leid, das hat mir aber leider nicht geholfen.

Bezug
        
Bezug
Nilpotente Lie-Gruppen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 So 17.08.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]