matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraNilpotent
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Nilpotent
Nilpotent < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nilpotent: Tipp
Status: (Frage) beantwortet Status 
Datum: 09:42 Mo 08.05.2006
Autor: Arnbert

Hallo Ihr!
ich habe eine frage zu der folgenden Aufgabe:
Für n aus den natürlichen zahlen ist V der UVR
V= [mm] \summe_{i+j \le n} a_{ij}X^{i}Y^{j} [/mm] mit [mm] a_{ij} \in \IR [/mm] von [mm] \IR[X,Y] [/mm]

[mm] D_{X} [/mm] und [mm] D_{Y} [/mm] sind gegeben durch  [mm] D_{X}(P)=Y \bruch{ \partial P}{ \partial X} [/mm] und [mm] D_{Y}(P)=X \bruch{ \partial P}{ \partial Y} [/mm] , wobei das letztgenannte die parteiellen ableitungen sind.
Kann mir jetzt bitte wer zeuigen das [mm] D_{X} [/mm] und [mm] D_{Y} [/mm] nilpotent sind?
Mfg Arne
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nilpotent: wie bei normalen Polynomen
Status: (Antwort) fertig Status 
Datum: 10:48 Mo 08.05.2006
Autor: statler

Hallo Arne!

>  ich habe eine frage zu der folgenden Aufgabe:
>  Für n aus den natürlichen zahlen ist V der UVR
> V= [mm]\summe_{i+j \le n} a_{ij}X^{i}Y^{j}[/mm] mit [mm]a_{ij} \in \IR[/mm]
> von [mm]\IR[X,Y][/mm]
>  
> [mm]D_{X}[/mm] und [mm]D_{Y}[/mm] sind gegeben durch  [mm]D_{X}(P)=Y \bruch{ \partial P}{ \partial X}[/mm]
> und [mm]D_{Y}(P)=X \bruch{ \partial P}{ \partial Y}[/mm] , wobei das
> letztgenannte die parteiellen ableitungen sind.
>  Kann mir jetzt bitte wer zeuigen das [mm]D_{X}[/mm] und [mm]D_{Y}[/mm]
> nilpotent sind?

Nilpotent heißt doch in diesem Zusammenhang ganz lax, daß ich die 0-Abb. kriege, wenn ich [mm] D_{X} [/mm] (bzw. [mm] D_{Y}) [/mm] oft genug hintereinander ausführe. Aber für [mm] D_{X} [/mm] ist Y doch eine Konstante, d. h. bei jeder Anwendung von D sinkt der Grad des Polynoms in X um 1. Und so komme ich dann erst zu den Konstanten und dann zur Null.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Nilpotent: rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:11 Mo 08.05.2006
Autor: Arnbert

hey danke schon mal...
aber wie schreibe ich das denn am besten auf...ab mit dem hinschreiben bei so was immer probleme..
wäre nett wenn du mir das noch mal sagen könntest.
danke arne

Bezug
                        
Bezug
Nilpotent: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Mo 08.05.2006
Autor: felixf

Hallo Arne!

Ich denke man kann es ganz gut aufschreiben, wenn man ausnutzt, dass [mm] $\left(\frac{d}{d x}\right)^{n+1}$ [/mm] der Nulloperator ist (also alles auf 0 abbildet), und dass $y [mm] \frac{d}{d x} [/mm] f = [mm] \frac{d}{d x} [/mm] (y f)$ ist, also dass $y$ mit [mm] $\frac{d}{d x}$ [/mm] kommutiert.

Diese zwei Fakten sind recht einfach zu zeigen, und wenn du sie zusammenschmeisst bekommst du das was du zeigen willst...

LG Felix


Bezug
        
Bezug
Nilpotent: rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:17 Mo 08.05.2006
Autor: Arnbert

probiere da jetzt die ganze zeit dran rum aber das klappt irgendwie nicht.bekomme das nix gescheites hin.kannst du mir vielleicht kurz sagen wie das geht und wie man dann dass zusammenschmeißt dammit man hat was man  braucht?
das wäre nett, bis denn arne

Bezug
                
Bezug
Nilpotent: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Mo 08.05.2006
Autor: felixf

Hallo Arne!

> probiere da jetzt die ganze zeit dran rum aber das klappt
> irgendwie nicht.bekomme das nix gescheites hin.kannst du
> mir vielleicht kurz sagen wie das geht und wie man dann
> dass zusammenschmeißt dammit man hat was man  braucht?
>  das wäre nett, bis denn arne

Du hast: [mm] $D_X^n(f) [/mm] = [mm] (D_X \circ D_X \circ \dots \circ D_X)(f) [/mm] = (Y [mm] \frac{\partial}{\partial X} [/mm] Y [mm] \frac{\partial}{\partial X} \dots [/mm] Y [mm] \frac{\partial}{\partial X})(f) [/mm] =  (Y [mm] \frac{\partial}{\partial X})^n [/mm] f = [mm] Y^n \frac{\partial^n}{\partial X^n} [/mm] f$, da $Y$ und [mm] $\frac{\partial}{\partial X}$ [/mm] kommutieren. Wenn du jetzt $n$ gross genug waehlst...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]