matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraNichtkommutativität von H
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Nichtkommutativität von H
Nichtkommutativität von H < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nichtkommutativität von H: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:04 Fr 19.11.2010
Autor: Robbe007

Aufgabe
Es gibt kubische Polynome über H, zb [mm] x^2ixi+ix^2ix-ixix^2-xix^2i, [/mm] die von allen Quaternionen annuliert werden.

Also ich soll die Aussage beweisen und weiß nicht so genau was das heißt? Ich weiß das jede Quaternion der Gleichung [mm] x^2= \alpha [/mm] x+ [mm] \beta [/mm] e genügt. Wenn ich jetzt für [mm] x^2 [/mm] im obigen Polynom [mm] \alpha [/mm] x+ [mm] \beta [/mm] e  einsetze soll wohl die behauptung folgen.

leider sehe ich das nicht wenn ich das einsetzte. Heißt annuliert das das Polynom null wird? Das sich da alles wegkürzt sehe ich ja aber da H nicht kommutativ ist darf man das ja nicht wegkürzen da zb.  x^2ixi  [mm] \not= ixix^2 [/mm]

kann mir da jemand bitte helfen?

LG

        
Bezug
Nichtkommutativität von H: Antwort
Status: (Antwort) fertig Status 
Datum: 06:23 Sa 20.11.2010
Autor: felixf

Moin!

> Es gibt kubische Polynome über H, zb
> [mm]x^2ixi+ix^2ix-ixix^2-xix^2i,[/mm] die von allen Quaternionen
> annuliert werden.
>
>  Also ich soll die Aussage beweisen und weiß nicht so
> genau was das heißt? Ich weiß das jede Quaternion der
> Gleichung [mm]x^2= \alpha[/mm] x+ [mm]\beta[/mm] e genügt. Wenn ich jetzt
> für [mm]x^2[/mm] im obigen Polynom [mm]\alpha[/mm] x+ [mm]\beta[/mm] e  einsetze soll
> wohl die behauptung folgen.

Hast du es mal getan? Was kommt bei dir heraus?

> leider sehe ich das nicht wenn ich das einsetzte. Heißt
> annuliert das das Polynom null wird?

Exakt.

> Das sich da alles
> wegkürzt sehe ich ja aber da H nicht kommutativ ist darf
> man das ja nicht wegkürzen da zb.  x^2ixi  [mm]\not= ixix^2[/mm]

Klar, du musst aufpassen, da es nicht kommutativ ist. So einfach kuerzt sich da also nichts weg.

Also. Setz mal das von oben ein. Was kommt heraus? Beachte, dass du Elemente aus [mm] $\IR$ [/mm] mit anderen vertauschen kannst in einem Produkt.

LG Felix


Bezug
                
Bezug
Nichtkommutativität von H: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:28 So 21.11.2010
Autor: Robbe007

vielen dank für deine Hilfe erstmal =)

Also wenn ich das einsetze hab ich das raus:

( [mm] \alpha [/mm] x+ [mm] \beta [/mm] e)ixi+i( [mm] \alpha [/mm] x+ [mm] \beta [/mm] e)ix-ixi( [mm] \alpha [/mm] x+ [mm] \beta [/mm] e)-xi( [mm] \alpha [/mm] x+ [mm] \beta [/mm] e)i, wenn ich es ausklammer bekomm ich also:

[mm] \alpha [/mm] xixi+ [mm] \beta [/mm] ixi + i [mm] \alpha [/mm] xix + i [mm] \beta [/mm] ix - ixi [mm] \alpha [/mm] x -ixi [mm] \beta [/mm] - xi [mm] \alpha [/mm] xi - xi [mm] \beta [/mm] i


so und jetzt darf ich zb. beim zweiten therm das [mm] \beta [/mm] nach hinten stellen und dann kürzt sich das mit dem -ixi [mm] \beta [/mm] weg? ist das so richtig? wieso darf ich das denn?

und was sagt die aussage denn aus dass man polynome durch quaternionen annulieren kann?

Bezug
                        
Bezug
Nichtkommutativität von H: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 So 21.11.2010
Autor: felixf

Moin!

> vielen dank für deine Hilfe erstmal =)

Bitte :)

> Also wenn ich das einsetze hab ich das raus:
>
> ( [mm]\alpha[/mm] x+ [mm]\beta[/mm] e)ixi+i( [mm]\alpha[/mm] x+ [mm]\beta[/mm] e)ix-ixi( [mm]\alpha[/mm]
> x+ [mm]\beta[/mm] e)-xi( [mm]\alpha[/mm] x+ [mm]\beta[/mm] e)i, wenn ich es ausklammer
> bekomm ich also:
>  
> [mm]\alpha[/mm] xixi+ [mm]\beta[/mm] ixi + i [mm]\alpha[/mm] xix + i [mm]\beta[/mm] ix - ixi
> [mm]\alpha[/mm] x -ixi [mm]\beta[/mm] - xi [mm]\alpha[/mm] xi - xi [mm]\beta[/mm] i
>  
>
> so und jetzt darf ich zb. beim zweiten therm das [mm]\beta[/mm] nach
> hinten stellen und dann kürzt sich das mit dem -ixi [mm]\beta[/mm]
> weg? ist das so richtig? wieso darf ich das denn?

Ja, das darfst du. Schliesslich ist [mm] $\beta$ [/mm] ein Element aus [mm] $\IR$. [/mm]

Du kannst schnell nachrechnen, dass $(a + b i + c j + d k) [mm] (\beta [/mm] + 0 i + 0 j + 0 k) = [mm] (\beta [/mm] + 0 i + 0 j + 0 k) (a + b i + c j + d k)$ ist mit $a, b, c, d, [mm] \beta \in \IR$. [/mm]

> und was sagt die aussage denn aus dass man polynome durch
> quaternionen annulieren kann?

Ueber einem unendlichen kommutativen Koerper gibt es kein Polynom ausser dem Nullpolynom, welches alle Elemente annuliert. Das kann nur passieren, wenn es a) nicht kommutativ ist, b) nicht unendlich ist, oder c) es kein Koerper ist.

Das hier ist also ein Beispiel fuer a).

Beispiele fuer b) und c) hast du evtl. schon in der Vorlesung gesehen bzw. sie kommen spaeter.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]