matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisNicht konstante Lsg einer DGL
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Nicht konstante Lsg einer DGL
Nicht konstante Lsg einer DGL < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nicht konstante Lsg einer DGL: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:56 Mi 28.06.2006
Autor: Sherin

Aufgabe
Bestimmen Sie eine nicht-konstante Lösung der Gleichung
y''(t)-cos(t)y'(t)+sin(t)y(t) = sin(t)

Hallo ihr lieben,
also bei der Aufgabe habe ich erstmal das charakteristische polynom aufgestellt und dann die homogene gleichung gelöst!
[mm] \lambda^{2}-cos(t) \lambda [/mm] + sin(t) = 0.

Die Lösungen dieser Gleichung sind ja:
[mm] \lambda_{1} [/mm] =  [mm] \bruch{cos(t)}{2} [/mm] +  [mm] \bruch{ \wurzel{cos^2(t)-4sin(t)}}{2} [/mm]
[mm] \lambda_{2} [/mm] =  [mm] \bruch{cos(t)}{2} [/mm] -  [mm] \bruch{ \wurzel{cos^2(t)-4sin(t)}}{2} [/mm]

Somit wäre ja die allgemeine Lösung des homogenen Systems gegeben durch:
y(t) = A [mm] e^{\lambda_{1}} [/mm] + B [mm] e^{\lambda_{2}} [/mm]

Die Inhomogenität wäre ja von der Form sin(t) = [mm] \bruch{e^{\lambda_{1}}+ e^{\lambda_{2}}}{2}. [/mm]

Da [mm] \lambda_{1} [/mm] und [mm] \lambda_{2} [/mm] Nullstellen des charakteristischen Polynoms sind, ist doch die Lösung der inhomogenen Gleichung von der Form [mm] cte^{\lambda_{1}t}+dte^{\lambda_{2}t}. [/mm]

Bin hier total auf dem falschen Weg? Ich denke ja, weil ich hier irgendwie so gar nicht weiterkomme.

Ein äquivalenter Ansatz dazu wäre ja dann: t( sin (t) + b cos (t)).

Von diesem Term könnte ich ja die Ableitungen machen, aber bringt mit das irgendwas?

Würd mich freuen, wenn mir jemand weiterhelfen könnte bzw. nen anderen ansatz geben könnte!

Ich bedanke mich im voraus!

Lg,
Sherin


        
Bezug
Nicht konstante Lsg einer DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:33 Do 29.06.2006
Autor: leduart

Hallo sherin
Die Methode mit dem char. Polynom geht nur mit Dgl mit konstanten Koeffizienten.
Zum Lösen hab ich grad keine Zeit.
Gruss leduart

Bezug
        
Bezug
Nicht konstante Lsg einer DGL: Ansatz
Status: (Antwort) fertig Status 
Datum: 08:54 Fr 30.06.2006
Autor: DocBorn

Hallo Sherin,
was mich an DGLs so etwas verängstigt ist halt, dass man immer so intuitive Ansätze braucht. Wenn man die Gleichung hier nämlich lange genug und böse genug ansieht dann sagt sie einem irgendwann freiwillig, dass ja

(cos(t) * y(t) )'

nach Produktregel

cos(t) * y'(t) - sin(t) * y(t)

ist. Somit lässt sich deine DGL schreiben als

y''(t) - (cos(t) * y(t) )' = sin(t)

was man umformen kann zu

y'(t) = cos(t) * y(t) - cos(t)

jetzt hast du ne inhomogne DGL erster Ordnung, die man wie gewöhnlich lösen kann.

Bezug
        
Bezug
Nicht konstante Lsg einer DGL: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 30.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]