matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungNewtonverfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Newtonverfahren
Newtonverfahren < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newtonverfahren: Korrektur Tipp
Status: (Frage) beantwortet Status 
Datum: 23:59 Di 05.06.2012
Autor: Jack2k

Aufgabe
Ermittle alle Schnittpunkte der Funktion:

f(x)= [mm] \bruch{1}{2} [/mm] + [mm] x^{4} [/mm] + x
und
g(x) = [mm] 2-x^{2} [/mm]

mithilfe des Newtonverfahrens. Starte dabei mit einem frei gewählten Startpunkten und stoppe die Iteration, wenn sich die dritte Nachkommastelle nicht mehr ändert.


Hallo Matheraum,

wieder einmal eine Frage von mir (hoffentlich bin ich in diesem Teil des Forums richtig).
Mein Lösungsansatz wäre:

die beiden Funktionen gleichsetzen:
[mm] \bruch{1}{2} [/mm] + [mm] x^{4} [/mm] + x = [mm] 2-x^{2} [/mm]

danach eine Seite "auf Null setzen"
[mm] \bruch{1}{2} [/mm] + [mm] x^{4} [/mm] + x -2 + [mm] x^{2}= [/mm] 0
(das würde ich nun als das f(x) in der Newton Formel ansehen)

[mm] x_{n+1} [/mm] = [mm] x_{0} [/mm] - [mm] \bruch{f(x)}{f´(x)} [/mm]

nun die erste Ableitung von f(x) erstellen, also f´(x).
Das wäre:
f´(x)= [mm] 4x^{3}+2x+1/3 [/mm]

Nun wähle ich (weil ich keine Ahnung habe wie ich einen besseren bekommen soll) 1 als Startwert.

Die Newtonformel wäre dann:
[mm] x_{0+1} [/mm] = 1 - [mm] \bruch{\bruch{1}{2} + 1^{4} + 1 -2 + 1^{2}}{4*1^{3}+2*1+1/3} [/mm]

[mm] x_{1} [/mm] = 1 - [mm] \bruch{0,5 + 1 + 1 -2 + 1}{4 +2 +1/3} [/mm]
[mm] x_{1} [/mm] = 1 - [mm] \bruch{1,5}{6,33} [/mm]
[mm] x_{1} [/mm] = 0,763157

[mm] x_{2} [/mm] = 0,708291

Denn dieser Newton Abschnitt [mm] (x_{3}) [/mm] gibt bei mir folgendes:
[mm] x_{3} [/mm] = 0,708291 - [mm] \bruch{0,5 + 0,708291 ^{4} + 0,708291 -2 + 0,708291^{2}}{4*0,708291^{3}+2*0,708291+1/3} [/mm]
[mm] x_{3} [/mm] = 0,708291 - [mm] \bruch{-0,03872}{3,1704333} [/mm]

[mm] x_{3} [/mm] = 0,696078 (was mich schon wundert, weil es hier in die andere Richtung geht....)
und da liegt auch mein Problem ... Vielleich weiß einer einen Rat.

Gruß
Jack2k




        
Bezug
Newtonverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 Mi 06.06.2012
Autor: fencheltee


> Ermittle alle Schnittpunkte der Funktion:
>  
> f(x)= [mm]\bruch{1}{2}[/mm] + [mm]x^{4}[/mm] + x
>  und
>  g(x) = [mm]2-x^{2}[/mm]
>  
> mithilfe des Newtonverfahrens. Starte dabei mit einem frei
> gewählten Startpunkten und stoppe die Iteration, wenn sich
> die dritte Nachkommastelle nicht mehr ändert.
>  
> Hallo Matheraum,
>  
> wieder einmal eine Frage von mir (hoffentlich bin ich in
> diesem Teil des Forums richtig).
>  Mein Lösungsansatz wäre:
>  
> die beiden Funktionen gleichsetzen:
>  [mm]\bruch{1}{2}[/mm] + [mm]x^{4}[/mm] + x = [mm]2-x^{2}[/mm]
>  
> danach eine Seite "auf Null setzen"
>  [mm]\bruch{1}{2}[/mm] + [mm]x^{4}[/mm] + x -2 + [mm]x^{2}=[/mm] 0
> (das würde ich nun als das f(x) in der Newton Formel
> ansehen)
>  
> [mm]x_{n+1}[/mm] = [mm]x_{0}[/mm] - [mm]\bruch{f(x)}{f´(x)}[/mm]
>  
> nun die erste Ableitung von f(x) erstellen, also f´(x).
>  Das wäre:
>  f´(x)= [mm]4x^{3}+2x+1/3[/mm]

hallo,
wo genau hast du die 1/3 her?!

>
> Nun wähle ich (weil ich keine Ahnung habe wie ich einen
> besseren bekommen soll) 1 als Startwert.
>  
> Die Newtonformel wäre dann:
>  [mm]x_{0+1}[/mm] = 1 - [mm]\bruch{\bruch{1}{2} + 1^{4} + 1 -2 + 1^{2}}{4*1^{3}+2*1+1/3}[/mm]
>  
> [mm]x_{1}[/mm] = 1 - [mm]\bruch{0,5 + 1 + 1 -2 + 1}{4 +2 +1/3}[/mm]
>  [mm]x_{1}[/mm] =
> 1 - [mm]\bruch{1,5}{6,33}[/mm]
>  [mm]x_{1}[/mm] = 0,763157
>  
> [mm]x_{2}[/mm] = 0,708291
>  
> Denn dieser Newton Abschnitt [mm](x_{3})[/mm] gibt bei mir
> folgendes:
>  [mm]x_{3}[/mm] = 0,708291 - [mm]\bruch{0,5 + 0,708291 ^{4} + 0,708291 -2 + 0,708291^{2}}{4*0,708291^{3}+2*0,708291+1/3}[/mm]
>  
> [mm]x_{3}[/mm] = 0,708291 - [mm]\bruch{-0,03872}{3,1704333}[/mm]
>  
> [mm]x_{3}[/mm] = 0,696078 (was mich schon wundert, weil es hier in
> die andere Richtung geht....)
>  und da liegt auch mein Problem ... Vielleich weiß einer
> einen Rat.
>  
> Gruß
>  Jack2k
>  
>
>  

  

gruß tee


Bezug
                
Bezug
Newtonverfahren: Tipp
Status: (Frage) beantwortet Status 
Datum: 00:56 Mi 06.06.2012
Autor: Jack2k

Hallo Fencheltee,

das ist meine Ableitung von f(x) = [mm] \bruch{1}{2}+x^{4}+x-2+x^{2} [/mm]

Den Bruch habe ich über
[mm] \bruch{1}{2} [/mm] = [mm] 1^{-2} [/mm] = -2 * [mm] 1^{-3} [/mm] = -2 * [mm] \bruch{1}{3} [/mm] = daher [mm] \bruch{-2}{3} [/mm]
[mm] x^{4} [/mm] = [mm] 4x^{3} [/mm]
x = 1
-2 (da Konstante, verschwindet)
[mm] x^{2} [/mm] = 2x

Somit [mm] \bruch{-2}{3} [/mm] + [mm] 4x^{3} [/mm] + 2x + 1 = [mm] 4x^{3} [/mm] + 2x +  [mm] \bruch{1}{3} [/mm]

ich hoffe damit habe ich richtig gelegen ?

Gruß
Jack2k

Bezug
                        
Bezug
Newtonverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Mi 06.06.2012
Autor: fencheltee


> Hallo Fencheltee,
>  
> das ist meine Ableitung von f(x) =
> [mm]\bruch{1}{2}+x^{4}+x-2+x^{2}[/mm]
>  
> Den Bruch habe ich über
> [mm]\bruch{1}{2}[/mm] = [mm]1^{-2}[/mm] = -2 * [mm]1^{-3}[/mm] = -2 * [mm]\bruch{1}{3}[/mm] =
> daher [mm]\bruch{-2}{3}[/mm]
>  [mm]x^{4}[/mm] = [mm]4x^{3}[/mm]
>  x = 1
>  -2 (da Konstante, verschwindet)
>  [mm]x^{2}[/mm] = 2x

hallo,
1/2 ist doch genauso eine konstante wie die -2?! oder hast du noch irgendwo ein x vergessen? ist so nicht nachvollziehbar

>  
> Somit [mm]\bruch{-2}{3}[/mm] + [mm]4x^{3}[/mm] + 2x + 1 = [mm]4x^{3}[/mm] + 2x +  
> [mm]\bruch{1}{3}[/mm]
>  
> ich hoffe damit habe ich richtig gelegen ?
>  
> Gruß
>  Jack2k

gruß tee

Bezug
                                
Bezug
Newtonverfahren: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:55 Mi 06.06.2012
Autor: Jack2k

Hallo Fencheltee,

irgendwie hast du recht...
aber ich steige  noch nicht dahinter wieso ?

Gruß
Jack2k

Bezug
                                        
Bezug
Newtonverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Mi 06.06.2012
Autor: chrisno

von weiter oben
> danach eine Seite "auf Null setzen"

$ [mm] \bruch{1}{2} [/mm] $ + $ [mm] x^{4} [/mm] $ + x -2 + $ [mm] x^{2}= [/mm] $ 0
(das würde ich nun als das f(x) in der Newton Formel ansehen)
Vielleicht noch aufräumen:
[mm] $x^4 [/mm] + [mm] x^2 [/mm] + x [mm] -\bruch{3}{2}$ [/mm]

> nun die erste Ableitung von f(x) erstellen, also f´(x).
> Das wäre:
> f´(x)= $ [mm] 4x^{3}+2x+1/3 [/mm] $

[mm] $x^4$ [/mm] abgeleitet ergibt [mm] $4x^3$ [/mm] [ok]
[mm] $x^2$ [/mm] abgeleitet ergibt $2x$ [ok]
$x$  abgeleitet ergibt 0? [kopfschuettel]
[mm] $\bruch{2}{3}$ [/mm]  abgeleitet ergibt [mm] $\bruch{1}{3}$ [/mm] [kopfschuettel]

Was ist die Ableitungsfunktion von $f(x) = ax$?
Was ist die Ableitungsfunktion von $f(x) = b$?
Setze nun a = 1 und $b = [mm] \bruch{3}{2}$. [/mm]


Bezug
                                                
Bezug
Newtonverfahren: Korrektur
Status: (Frage) beantwortet Status 
Datum: 09:33 Mo 11.06.2012
Autor: Jack2k

Hallo,

erst einmal danke für all die Antworten. Nachdem ich nun meinen Fehler gefunden habe (eine Konstanste abgeleitet ist gleich 0, X abgeleitet wird zu 1) komme ich nun zu den Lösungen

f(x) = [mm] x^4 [/mm] + [mm] x^2 [/mm] + x - [mm] \bruch{3}{2} [/mm]

sowie

f'(x) = [mm] 4x^3 [/mm] +2x + 1

Nun habe ich aber das Problem, das f'(x) nicht in der "Form" für die pq Formel ist, und ich auch leider keine Idee habe wie ich f'(x) in diese bekommen soll. Natürlich würde es nun noch die Mitternachtsformel geben, aber die passt ja nur bei quadratischen Gleichungen also habe ich mal Google bemüht und bin auf die Lösungsformel von Cardano/Tartaglia gestoßen (http://de.wikipedia.org/wiki/Cardanische_Formeln). Diese Formel habe ich aber leider nicht bei mir in den Heften mit drinnen, also kann das eigentlich auch nicht sein.

Nun wird guter Rat wieder selten...
Gruß
Jack2k


Bezug
                                                        
Bezug
Newtonverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 Mo 11.06.2012
Autor: chrisno

Du hast dies als Mitteilung eingestellt. Damit bewirkst Du, dass das, wenn überhaupt, nur von denen gelesen wird, die bisher auch bei der Diskussion waren. Also: Fragen als Fragen stellen.

Du hast über dem Ableiten die eigentliche Aufgabenstellung vergessen. E sind nicht die Nullstellen der ersten Ableitung gesucht. Du sollst die erste Ableitung verwenden, um die Nullstellen von f(x) zu finden. Am besten verschaffst Du Dir mit einem Plot einen Überblick über den Verlauf des Funktionsgraphen. Dann setzt Du dich auf einen Punkt in der Nähe einer Nullstelle und peilst mit Hilfe von f'(x) eine Schätzung der Nullstelle an. Mit dieser Schätzung verschaffst Du Dir auf die gleiche Art die nächste, bessere Schätzung. Sobald genug stabile Stellen im Ergebnis stehen, kannst Du aufhören.

Bezug
                                                                
Bezug
Newtonverfahren: ein Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:37 Mo 11.06.2012
Autor: Jack2k

Hallo chrisno,

vielen Dank für die schnelle Antwort. Nun endlich habe ich es auch verstanden und hab die Punkte

x1/y1 = 0,7181 / 1,48

x2/y2 = -1,0891 / 0,81

ausgerechnet.

Da ich diese beiden x-Werte dann in die "ursprüngliche Formel" eingesetzt habe und die beiden Formeln sich erst ab der 3. Stelle unterscheiden (also der y-wert) , werde ich nun hoffentlich verstanden haben wie es geht (bei der "Schnittpunktbestimmung").

Bei der Nullstellenbestimmung muss es ja (das mit den qubischen haben wir noch nicht, daher kann der Leher es noch nicht fragen) mit der "pq Formel" oder mit der "Mitternachtsformel" gehen.

Würde es noch eine Methode für das Newton Verfahren geben (nicht das ich genau die die ich brauche, nicht begreife !)

Gruß
Jack2k



Bezug
                                                                        
Bezug
Newtonverfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:56 Mo 11.06.2012
Autor: chrisno


> ...
> Da ich diese beiden x-Werte dann in die "ursprüngliche
> Formel" eingesetzt habe und die beiden Formeln sich erst ab
> der 3. Stelle unterscheiden (also der y-wert) , werde ich
> nun hoffentlich verstanden haben wie es geht (bei der
> "Schnittpunktbestimmung").

Eigentlich gehört dazu, dass als Kriterium zum Beispiel angegeben wird: So lange, bis die ersten 5 Ziffern übereinstimmen.

>  
> Bei der Nullstellenbestimmung muss es ja (das mit den
> qubischen haben wir noch nicht, daher kann der Leher es
> noch nicht fragen) mit der "pq Formel" oder mit der
> "Mitternachtsformel" gehen.

Du hast doch die Schnittstellenbestimmung in eine Nullstellenbestimmung umgewandelt. Das Newtonverfahren funktioniert für viele Funktionen, aber nicht immer. Du bekommst aber nur eine Näherungslösung und auch nur eine Dezimalzahl. Es gibt also kein Ergebns der Art $x= [mm] \sqrt{5}$. [/mm] Daher ist die pq-Formel immer vorzuziehen. Die gilt aber nur für quadratische Funktionen. Ähnliche, aber kompliziertere Formeln gibt es für kubische Funktionen. Da verzichtet man aber heutzutage auf die Lösung mit den Formeln sondern lässt sich das Ergbenis vom Rechner liefern.
>

> Würde es noch eine Methode für das Newton Verfahren geben
> (nicht das ich genau die die ich brauche, nicht begreife
> !)

Verstehe ich nicht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]