Newton Verfahren keine lösung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:52 Sa 06.01.2007 | Autor: | jrehan |
Meine Fage lautet. Ich hab ein Referart über das newton Verfahrne gemacht . Nun bin ich zu dem Punkt gelangt das ich Funktionen oderRegeln Suche für die man das newton verfahrne nicht einsetzen kann.
Dazu hab ich folgendes gefunden.
Bei der Mehrzahl aller Funktionen kannst du die Gleichung, die durch =0-Setzen entsteht nicht nach x auflösen! Nimm dir einfach (mind. 2)verschiedene der elementaren Funktionen (soll heißen: Ein Poloynom, eine trigonometrische Funktion, Exponentialfunktion, Logarithmusfunktion ...) und pack die irgendwie durch Addition, Multiplikation, Division, Verkettung usw. zusammen und du wirst die Gleichung oft nicht nach x auflösen können!
Nun wollte ich wissen ob dies Stimmt oder ab sich dies auf etwas anderes Des newton Verfahren bezieht.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Hi, jrehan,
> Meine Fage lautet. Ich hab ein Referart über das newton
> Verfahrne gemacht . Nun bin ich zu dem Punkt gelangt das
> ich Funktionen oder Regeln Suche für die man das newton
> verfahrne nicht einsetzen kann.
>
> Dazu hab ich folgendes gefunden.
>
> Bei der Mehrzahl aller Funktionen kannst du die Gleichung,
> die durch =0-Setzen entsteht nicht nach x auflösen! Nimm
> dir einfach (mind. 2)verschiedene der elementaren
> Funktionen (soll heißen: Ein Poloynom, eine
> trigonometrische Funktion, Exponentialfunktion,
> Logarithmusfunktion ...) und pack die irgendwie durch
> Addition, Multiplikation, Division, Verkettung usw.
> zusammen und du wirst die Gleichung oft nicht nach x
> auflösen können!
>
> Nun wollte ich wissen ob dies Stimmt oder ab sich dies auf
> etwas anderes Des newton Verfahren bezieht.
Der untere Abschnitt beschreibt genau den Grund dafür, weshalb man Näherungsverfahren wie z.B. das Newton-Verfahren benötigt. Bei einer Funktion mit z.B. dem Funktionsterm f(x) = x + [mm] e^{x} [/mm] kannst Du die Nullstellen nicht auf üblichem Weg lösen, da man die Gleichung
x + [mm] e^{x} [/mm] = 0
nicht nach x auflösen und dann das x ausrechnen kann.
Hier kann man also das Newton-Verfahren zur Näherung verwenden.
Nun gibt es aber auch Fälle, wo das Newton-Verfahren nicht zum Ziel führt, z.B. wenn man einen Startwert erwischt, für den die Ableitung =0 ist. Manchmal divergiert das Verfahren auch, d.h. es nähert sich der gesuchten Nullstelle nicht.
Musst mal ein bissl rumprobieren (oder googeln), dann findest Du sicher Beispiele!
mfG!
Zwerglein
|
|
|
|