matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungNewton-Verfahren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Newton-Verfahren
Newton-Verfahren < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newton-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Di 01.05.2012
Autor: Fee

Aufgabe
Wende das Newton-Verfahren an : f(x) = [mm] x^3 [/mm] + [mm] 3x^2 [/mm] - 2x -7

Guten Abend ihr Lieben !

Ich zeig euch mal, wie ich es gerechnet hab :

f´(x) = [mm] 3x^2 [/mm] +6x - 2

Der Startwert ist bei mir 0.x = 1

1.x = 1 - ((-5)/7) = 1,71428
2.x = 1,71428- (3,42565/17,10204) = 1,51397
3.x = 1,51397 - (0,31860/13,96019) = 1,40115
4.x = 1,49115 - (0,00391/13,61750) = 1,49086
5.x = 1,49086 - (0.000000618/13,61320) = 1,49086
6.x = 0
7.x = 0
...

Wisst ihr, warum ab 6.x nur noch 0 herauskommt ? Welche Bedeutung hat das ?

Und wie erkenne ich jetzt die Nullstelle ?

Liebe Grüße

Eure Fee

        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Di 01.05.2012
Autor: MathePower

Hallo Fee,

> Wende das Newton-Verfahren an : f(x) = [mm]x^3[/mm] + [mm]3x^2[/mm] - 2x -7
>  Guten Abend ihr Lieben !
>  
> Ich zeig euch mal, wie ich es gerechnet hab :
>  
> f´(x) = [mm]3x^2[/mm] +6x - 2
>  
> Der Startwert ist bei mir 0.x = 1
>  
> 1.x = 1 - ((-5)/7) = 1,71428
>  2.x = 1,71428- (3,42565/17,10204) = 1,51397
>  3.x = 1,51397 - (0,31860/13,96019) = 1,40115
>  4.x = 1,49115 - (0,00391/13,61750) = 1,49086
>  5.x = 1,49086 - (0.000000618/13,61320) = 1,49086
>  6.x = 0
>  7.x = 0
>  ...
>  
> Wisst ihr, warum ab 6.x nur noch 0 herauskommt ? Welche
> Bedeutung hat das ?
>  


Das liegt an der Genauigkeit mit dem der Rechenknecht gerechnet hat.
Hier offenbar mit 0,00001.

> Und wie erkenne ich jetzt die Nullstelle ?

>


Wenn sich zwei Näherungswerte um weniger als 0,00001 unterscheiden,
dann ist die Nullstelle auf 5 Stellen genau gefunden.

  

> Liebe Grüße
>  
> Eure Fee


Gruss
MathePower

Bezug
        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Di 01.05.2012
Autor: abakus


> Wende das Newton-Verfahren an : f(x) = [mm]x^3[/mm] + [mm]3x^2[/mm] - 2x -7
>  Guten Abend ihr Lieben !
>  
> Ich zeig euch mal, wie ich es gerechnet hab :
>  
> f´(x) = [mm]3x^2[/mm] +6x - 2
>  
> Der Startwert ist bei mir 0.x = 1
>  
> 1.x = 1 - ((-5)/7) = 1,71428
>  2.x = 1,71428- (3,42565/17,10204) = 1,51397
>  3.x = 1,51397 - (0,31860/13,96019) = 1,40115
>  4.x = 1,49115 - (0,00391/13,61750) = 1,49086
>  5.x = 1,49086 - (0.000000618/13,61320) = 1,49086
>  6.x = 0
>  7.x = 0
>  ...
>  
> Wisst ihr, warum ab 6.x nur noch 0 herauskommt ?

Sicher??? Müsste da nicht 1,49086 -(0.000.../13,61...), also 1,49086-0=1,49086 herauskommen?
Gruß Abakus

> Welche
> Bedeutung hat das ?
>  
> Und wie erkenne ich jetzt die Nullstelle ?
>  
> Liebe Grüße
>  
> Eure Fee


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]