matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungNewton-Verfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Newton-Verfahren
Newton-Verfahren < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newton-Verfahren: Schnittpunkte
Status: (Frage) beantwortet Status 
Datum: 18:24 Mo 01.02.2010
Autor: Julia031988

Aufgabe
Berechnen Sie den Schnittpunkt der beiden Funktionen f(x)= [mm] 2^x [/mm] und g(x)=3+ e^-2x mit dem Newton-Verfahren (3 Ilerationsschritte) ausgehend von x0= 3.

Ich hatte das Newton-Verfahren gar nicht in der Schule und eigentlich löst man solche Aufgaben ja auch durch gleichsetzen. Habe mich aber mal etwas umgeschaut und folgendes dazu gefunden:

f(x)-g(x)= 0

[mm] 2^x [/mm] - 3+e^(-2x)

Ab hier weiß ich jetzt nicht so wirklich was man machen soll. Mein Taschenrechner kann dazu wohl irgendwie auch nix und da ich morgen eine Prüfung schreibe, in die wir Unterlagen mitnehmen dürfen, würde ich mir gerne ne Beispielaufgabe wie diese, mit Weg notieren. An einem praktischen Beispiel verstehe ich Sachen leichter. Dieses theoretische Mathe verstehe ich leider immer gar nicht. Weswegen mir die Mathevorlesungen in der Uni auch wirklich nix gebracht haben. Ich hoffe ihr könnt mir helfen so eine Anleitung für dieses Verfahren zu erstellen.


        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Mo 01.02.2010
Autor: MathePower

Hallo Julia031988,


> Berechnen Sie den Schnittpunkt der beiden Funktionen f(x)=
> [mm]2^x[/mm] und g(x)=3+ e^-2x mit dem Newton-Verfahren (3
> Ilerationsschritte) ausgehend von x0= 3.
>  Ich hatte das Newton-Verfahren gar nicht in der Schule und
> eigentlich löst man solche Aufgaben ja auch durch
> gleichsetzen. Habe mich aber mal etwas umgeschaut und
> folgendes dazu gefunden:
>  
> f(x)-g(x)= 0
>  
> [mm]2^x[/mm] - 3+e^(-2x)
>  
> Ab hier weiß ich jetzt nicht so wirklich was man machen
> soll. Mein Taschenrechner kann dazu wohl irgendwie auch nix
> und da ich morgen eine Prüfung schreibe, in die wir
> Unterlagen mitnehmen dürfen, würde ich mir gerne ne
> Beispielaufgabe wie diese, mit Weg notieren. An einem
> praktischen Beispiel verstehe ich Sachen leichter. Dieses
> theoretische Mathe verstehe ich leider immer gar nicht.
> Weswegen mir die Mathevorlesungen in der Uni auch wirklich
> nix gebracht haben. Ich hoffe ihr könnt mir helfen so eine
> Anleitung für dieses Verfahren zu erstellen.

>



Das Newtonverfahren basiert darauf, das man
die Tangente an der Stelle des Näherungswertes bildet,
und dessen Schnittpunkt mit der x-Achse bestimmt wird.

Bsp.

Gesucht ist eine Lösung der Gleichung [mm]h\left(x\right)=0[/mm]
wobei [mm]x_{0}[/mm] der Startwert ist.

Zunächst wird die Tangente gebildet: [mm]y=h'\left(x_{0}\right)*\left(x-x_{0}\right)+h\left(x_{0}\right)[/mm]

Diese Tangente wird nun zum Schnitt mit der x-Achse gebracht:

[mm]0=h'\left(x_{0}\right)*\left(x-x_{0}\right)+h\left(x_{0}\right)[/mm]

Das ergibt den neuen Schnittpunkt [mm]x_{1}[/mm]

[mm]x_{1}=x_{0}-\bruch{h\left(x_{0}\right)}{h'\left(x_{0}\right)}[/mm]

Dies ist auch gleichzeitig der neue Näherungswert für die Lösung.


Gruss
MathePower

Bezug
                
Bezug
Newton-Verfahren: Lösung
Status: (Frage) beantwortet Status 
Datum: 18:59 Mo 01.02.2010
Autor: Julia031988

3- [mm] \bruch{2^x -3+e^(-2x)}{In(2)*2^x-2*e^(-2x)} [/mm]

Das wäre dann doch sozusagen die Umsetzung der Formel für diiese Aufgabe oder?
Und jetzt  einfach ausrechnen?

Bezug
                        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Mo 01.02.2010
Autor: MathePower

Hallo Julia031988,

> 3- [mm]\bruch{2^x -3+e^(-2x)}{In(2)*2^x-2*e^(-2x)}[/mm]
>  
> Das wäre dann doch sozusagen die Umsetzung der Formel für
> diese Aufgabe oder?


So wie das jetzt das steht, gilt das nur für den ersten Iterationschritt.

Besser ist:

[mm]\blue{x}-\bruch{2^x -3+e^{-2x}}{\ln(2)*2^x-2*e^{-2x}}[/mm]


>  Und jetzt  einfach ausrechnen?


Ja.


Gruss
MathePower

Bezug
                                
Bezug
Newton-Verfahren: rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:15 Mo 01.02.2010
Autor: Julia031988

Aufgabe
siehe anfang der frage

hmm also wenn ich 3 nicht für x einsetzen soll, soll ich dann einfach mit x das erstmal ausrechnen. mir ist jetzt nicht ganz klar wie das weiter ablaufen soll.
Also wenn ich das so normal ausrechne gubt mir der Taschenrechner folgendes:
[mm] \bruch{3*In(2)*e^(-2x)-In(2)-2}{In(2)*(In(2)*e^((In(2)+2)*x)-2}+x-\bruch{1}{In(2)} [/mm]

Bezug
                                        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Mo 01.02.2010
Autor: MathePower

Hallo Julia031988,

> siehe anfang der frage
>  hmm also wenn ich 3 nicht für x einsetzen soll, soll ich
> dann einfach mit x das erstmal ausrechnen. mir ist jetzt
> nicht ganz klar wie das weiter ablaufen soll.


Weshalb ich die 3 durch ein x ersetzt habe, hat den Grund,
daß Du dann die Formel immer wieder verwenden kannst.


>  Also wenn ich das so normal ausrechne gubt mir der
> Taschenrechner folgendes:
> [mm]\bruch{3*In(2)*e^(-2x)-In(2)-2}{In(2)*(In(2)*e^((In(2)+2)*x)-2}+x-\bruch{1}{In(2)}[/mm]

>


Habe ich jetzt net nachgerechnet.


Gruss
MathePower  

Bezug
                                                
Bezug
Newton-Verfahren: rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:52 Mo 01.02.2010
Autor: Julia031988

Aufgabe
siehe anfang der frage

ja aber ich verstehe jetzt nicht,was ich weiter mit diesr formel machen soll. also soll ich jetzt immer andere x-werte einsetzen und wenn ja wie lange oder worauf soll ich da jetzt achten. ich habe sowas noch nie gemacht...

Bezug
                                                        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Mo 01.02.2010
Autor: MathePower

Hallo Julia031988,

> siehe anfang der frage
>  ja aber ich verstehe jetzt nicht,was ich weiter mit diesr
> formel machen soll. also soll ich jetzt immer andere
> x-werte einsetzen und wenn ja wie lange oder worauf soll
> ich da jetzt achten. ich habe sowas noch nie gemacht...


Setze zuerst x=3 ein, dann erhältst Du
gemäß der Formel einen neuen x-Wert,  [mm]x_{1}[/mm].

Diesen neuen x-Wert setzt Du wieder in die Formel ein.
und erhältst wiederum einen anderen x-Wert.

Das geht so weiter, bis Du 3 Iterationschritte gemacht hast.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]