matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikNegative Binomialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Negative Binomialverteilung
Negative Binomialverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Negative Binomialverteilung: Aufgabe
Status: (Frage) überfällig Status 
Datum: 21:14 Sa 04.11.2006
Autor: SoB.DarkAngel

Aufgabe
Es seien [mm] X_{1}, X_{2} [/mm] unabhängige, geomatrisch mit Parameter p verteilte Zufallsvariable. Zeigen Sie, dass [mm] X_{1}+X_{2} [/mm] negativ binomialverteilt mit Parametern p und 2 ist.

Hallo.
Folgende Gedanken habe ich mir schon zu obiger Aufgabe gemacht:
Für die geomterische Verteilung gilt
[mm] P(X=n)=p*(1-p)^{n-1} [/mm]

Für die negative Binomialverteilung gilt
[mm] P(X=n)=\vektor{n-1 \\ r-1}p^{r}*(1-p)^{n-r} [/mm]

Um die gemeinsame Verteilung zu berechnen habe ich die Faltungsformel verwendet:
[mm] P((X_{1}+X_{2})=n)=\summe_{s=0}^{n}P(X_{1}=s)*P(X_{2}=n-s) [/mm]
[mm] =\summe_{s=0}^{n}p*(1-p)^{s-1}*p*(1-p)^{n-s-1} [/mm]
[mm] =\summe_{s=0}^{n}p^{2}*(1-p)^{n-2} [/mm]
Da das, was in der Summe steht, nicht mehr von s abhängt, kann ich ja folgendermaßen umformen:
[mm] =(n+1)*p^{2}*(1-p)^{n-2} [/mm]

Das was nach dem (n+1) steht ist ja nun schon richtig.
Mein Problem ist nun, dass da statt dem (n+1) ein [mm] \vektor{n-1 \\ 1}=n-1 [/mm] stehen müsste.
Ich weiß nicht, was mein Fehler ist und hoffe, mir kann jemand weiterhelfen.

Viele Grüße,
SoB.DarkAngel

        
Bezug
Negative Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:19 Sa 04.11.2006
Autor: luis52

Hallo  SoB.DarkAngel,

ich habe jetzt nicht viel Zeit, aber ich habe den Eindruck, dass in der
Spezifikation der Wahrscheinlichkeitsfunktion der geometrischen
Verteilung der Wurm ist. Das kleinste $n$ ist 1 und nicht 0, denn
$P(X=0)=p/(1-p)$ macht keinen Sinn. Bei der geometrischen Verteilung (und
der neg. Binomialverteilung) muss man aufpassen, was man modelliert: Die
Anzahl der Fehlwuerfe vor dem ersten Treffer (dann beginnt's bei 0) oder
die Anzahl Wuerfe insgesamt (dann beginnt's bei 1).

hth


Bezug
        
Bezug
Negative Binomialverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 08.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]