matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisNegation von Aussagen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Negation von Aussagen
Negation von Aussagen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Negation von Aussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:50 So 22.10.2006
Autor: sorry_lb

Aufgabe
Negieren Sie die folgenden Aussagen:
A1: Jede nat. Zahl hat einen Nachfolger.
A2: Es gibt ein [mm] \varepsilon [/mm] >0, so dass für alle x mit [mm] |x-x_{0}|< \varepsilon [/mm] gilt f(x) [mm] \le f(x_{0}). [/mm] (lokales Maximum einer Fkt f im Punkt [mm] x_{0}). [/mm]
A3: für jedes [mm] \varepsilon [/mm] >0 gibt es ein [mm] n_{0}(\varepsilon), [/mm] so dass [mm] |a_{n}-a|< \varepsilon [/mm] für alle nat Zahlen n [mm] \ge n_{0}(\varepsilon [/mm] ) gilt. (Konvergenz einer Zahlenfolge [mm] a_{n} [/mm] gegen einen Grenzwert a).

Heißt das jetzt das die lösung nur ist:
Es gibt min. eine nat Zahl,die keinen Nachfolger hat oder muss ich da was formel beweisen?
wie is das bei A2 un A3?

        
Bezug
Negation von Aussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 So 22.10.2006
Autor: galileo

Hi sorry_lb

> Negieren Sie die folgenden Aussagen:
>  A1: Jede nat. Zahl hat einen Nachfolger.

[mm]\neg A_{1}[/mm]: Es gibt mindestens eine natürliche Zahl, die keinen oder mehr als einen Nachfolger hat.

>  A2: Es gibt ein [mm]\varepsilon[/mm] >0, so dass für alle x mit
> [mm]|x-x_{0}|< \varepsilon[/mm] gilt f(x) [mm]\le f(x_{0}).[/mm] (lokales
> Maximum einer Fkt f im Punkt [mm]x_{0}).[/mm]

[mm]\neg A_{2}[/mm] Für alle [mm]\varepsilon >0[/mm] gibt es mindestens ein [mm]x[/mm] so, dass [mm] |x-x_{0}|<\varepsilon [/mm] und [mm]f(x)>f(x_{0})[/mm].

>  A3: für jedes [mm]\varepsilon[/mm] >0 gibt es ein
> [mm]n_{0}(\varepsilon),[/mm] so dass [mm]|a_{n}-a|< \varepsilon[/mm] für alle
> nat Zahlen n [mm]\ge n_{0}(\varepsilon[/mm] ) gilt. (Konvergenz
> einer Zahlenfolge [mm]a_{n}[/mm] gegen einen Grenzwert a).

[mm]\neg A_{3}[/mm] Es gibt ein [mm]\varepsilon >0[/mm] so, dass für alle [mm]n_{0}[/mm] es mindestens ein n gibt mit [mm]n>n_{0}[/mm] und [mm]|a_{n}-a|\ge\varepsilon[/mm]

Wenn ich mich nicht irre, müsste das richtig sein.

Gruss, :-)
galileo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]