matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungNatürlicher Logarithmus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Natürlicher Logarithmus
Natürlicher Logarithmus < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Natürlicher Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:43 Do 17.09.2009
Autor: ein_weltengel

Aufgabe
[mm] \integral_{a}^{b}{(ln(x))^{2} dx} [/mm]

Ich bin mir nicht ganz sicher bei dieser Aufgabe. Ich hab mir gedacht:

[mm] \bruch{1}{3}(x [/mm] ln(x) - [mm] x)^{x} [/mm] ... doch irgendwie glaub ich nicht, dass das Ergebnis ganz richtig ist ...

        
Bezug
Natürlicher Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 00:53 Do 17.09.2009
Autor: Herby

Hallo,

dieses Integral knackst du nur durch mehrmalige partielle Integration:

[mm] \integral{ln(x)*ln(x)\ dx}=... [/mm]


Für die Stammfunktion von ln(x), die ja wiederum in der partiellen Integration vorkommt, musst du dann abermals partiell integrieren:

[mm] \integral{ln(x)\ dx}=\integral{1*ln(x)\ dx}=... [/mm]


Lg
Herby

Bezug
                
Bezug
Natürlicher Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:18 Do 17.09.2009
Autor: ein_weltengel

[mm] \integral_{a}^{b}{(ln(x))2 dx} [/mm] = [mm] \integral_{a}^{b}{ln(x) * ln(x) dx} [/mm] = ln(x) * (x ln(x) - x) - [mm] \integral_{a}^{b}{\bruch{1}{x} ln(x) dx} [/mm] = ln(x) * (x ln(x) - x) - ln(x) * [mm] -\bruch{1}{2}x^{-2} [/mm] -  [mm] \integral_{a}^{b}{\bruch{1}{x} * \bruch{1}{x} dx} [/mm] = ln(x) * (x ln(x) - x) - ln(x) * [mm] -\bruch{1}{2}x^{-2} [/mm] + [mm] \bruch{1}{3}x^{-3} [/mm]

Stimmt das so?

Bezug
                        
Bezug
Natürlicher Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 01:25 Do 17.09.2009
Autor: Herby

Hi,

mal schauen :-)

> [mm]\integral_{a}^{b}{(ln(x))2 dx}[/mm] = [mm]\integral_{a}^{b}{ln(x) * ln(x) dx}[/mm]
> = ln(x) * (x ln(x) - x) - [mm]\integral_{a}^{b}{\bruch{1}{x} ln(x) dx}[/mm]

nein, der Anfang ist richtig, aber im rechten Integral müsste folgendes stehen

[mm] \integral{\bruch{1}{x}*(x*ln(x)-x)\ dx}=\integral{ln(x)-1\ dx} [/mm]

Damit solltest du auf die Lösung kommen.


Lg
Herby

Bezug
                                
Bezug
Natürlicher Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:31 Do 17.09.2009
Autor: ein_weltengel

Ach ja, da war wohl ein Fehler *augenroll*

Meine Lösung:

ln(x) * (x * ln(x) - x) - (x * ln(x) - x) - x = ln(x) * (x * ln(x) - x) - x * ln(x) =
ln(x) * (x * ln(x) - 2x)

Stimmt das so?

Bezug
                                        
Bezug
Natürlicher Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 01:39 Do 17.09.2009
Autor: Herby

Salut,

> Ach ja, da war wohl ein Fehler *augenroll*
>  
> Meine Lösung:
>  
> ln(x) * (x * ln(x) - x) - (x * ln(x) - x) - x

das letzte Minus muss ein Plus sein, da vor dem Integral auch ein Minus stand

> = ln(x) * (x * ln(x) - x) - x * ln(x) +2x
> = ln(x) * (x * ln(x) - 2x) +2x
>  
> Stimmt das so?

[daumenhoch] ja ;-)


Lg
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]