matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPolitik/WirtschaftNash-Gleichgewicht+Investition
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Politik/Wirtschaft" - Nash-Gleichgewicht+Investition
Nash-Gleichgewicht+Investition < Politik/Wirtschaft < Geisteswiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Politik/Wirtschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nash-Gleichgewicht+Investition: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:25 Fr 04.03.2011
Autor: miyagi

Aufgabe
Kann das Nash-Gleichgewicht in einer Spielmatrix als Entscheidungskriterium bei unabhängigen, simultanen Investitionsentscheidungen von zwei Wirtschaftssubjekten dienen?

Hallo liebe Leute,

in einer Klausur an einer Uni wurde Nicht-Wirtschaftswissenschaftlern eine Aufgabe mit einer Spielmatrix gestellt. Hier wurden 2 Unternehmen mit 3 verschiedenen Investitions-Strategien verglichen.
Es sollte eine Strategie-Emfpehlung für das Unternehmen A abgegeben werden, unter "der Voraussetzung unabhängier Entscheidungen".
Im Endeffekt sollte ein ein Nash-Gleichgewicht erkannt werden und dessen Lage als Investitions-Strategieempfehlung für das Unternehmen A herangezogen werden.
Irgendwie scheint mir die Frage nicht passend zur geforderten Antwort. Meines Erachtens nach könnte man das Nash-Gleichgewicht hier doch nur zu Rate ziehen, wenn man sicher ist, dass der Konkurrent eben diese eine Strategie wählt und auch beibehält. Somit wäre die Entscheidung aber nicht mehr unabhängig. Ich würde an dieser Stelle dazu tendieren die Strategie zu wählen, wo man gegenüber dem Konkurrenten stets oder meist im Vorteil ist. Wobei der erste Fall nicht existiert (Dominante Strategie).
Ich habe das Nash-Gleichgewicht bisher als mathematisches Instrument aufgefasst, mit dem man eben eine Situation beschreiben kann, die sich zufällig oder über eine Kooperation ergibt. Aber nicht als Konstrukt welches ich nutzen kann, um unabhängige Investitionsentscheidungen zu treffen.
Daher meine konkrete Frage:
Kann das Nash-Gleichgewicht in einer Spielmatrix als Entscheidungskriterium bei unabhängigen, simultanen Investitionsentscheidungen von zwei Wirtschaftssubjekten dienen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nash-Gleichgewicht+Investition: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mo 07.03.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Politik/Wirtschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]