matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperNachweis der Assoziativität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Nachweis der Assoziativität
Nachweis der Assoziativität < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachweis der Assoziativität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 Sa 05.04.2008
Autor: Teradil

Aufgabe
Auf der Menge der ganzen Zahlen [mm] \IZ [/mm] sei folgende Verknüpfung definiert:
a [mm] \times [/mm] b = [mm] (-1)^{a+b} \cdot [/mm] 2 + [mm] (-1)^b \cdot [/mm] a + [mm] (-1)^a \cdot [/mm] b
Man zeige, dass [mm] (\IZ, \times) [/mm] eine abelsche Gruppe ist.

Ich habe diese Frage in noch keinem anderen Forum gestellt!

Ich hab da ein leichtes Problem mit den Gruppeneigenschaften, speziell eigentlich nur mit dem Assoziativgesetz:
Abgeschlossenheit ist kein Problem, da [mm] \forall [/mm] a, b [mm] \in \IZ [/mm] : a [mm] \times [/mm] b = c [mm] \in \IZ [/mm] gilt.
Dass das Kommutativgesetz gilt, ist noch recht einfach ersichtlich.
Neutrales Element müsste -2 sein, womit das inverse sich dann wie folgt berechnet:

a [mm] \times {\hat a} [/mm] = -2 = [mm] (-1)^{a+\hat a} \cdot [/mm] 2 + [mm] (-1)^{\hat a} \cdot [/mm] a + [mm] (-1)^a \cdot {\hat a} [/mm]

a und [mm] {\hat a} [/mm] müssen das selbe Vorzeichen haben, denn hätten sie unterschiedliche Vorzeichen, so würde gelten (a gerade, [mm] {\hat a} [/mm] ungerade ):
-2 = -2 + [mm] {\hat a} [/mm] - a [mm] \rightarrow [/mm] a = [mm] {\hat a} [/mm] bzw. -2 = -2 - [mm] {\hat a} [/mm] + a [mm] \rightarrow [/mm] a = [mm] {\hat a} [/mm] jeweils im Widerspruch dazu, dass a und [mm] {\hat a} [/mm] unterschiedliche Reste bei Division mit 2 haben.

Wenn a und [mm] {\hat a} [/mm] als beide gerade (oder ungerade) sind, so ist
-2 = 2 + [mm] {\hat a} [/mm] + a [mm] \rightarrow {\hat a} [/mm] = -(4+a) ( bzw. -2 = 2 - [mm] {\hat a} [/mm] - a [mm] \rightarrow {\hat a} [/mm] = 4-a ).

Ich würde jetzt ja eigentlich gerne das Untergruppenkriterium anwenden, um mich vor dem Assoziativgesetz zu drücken:  
(a) (M*, *) ist genau dann Untergruppe von G = (M, *), wenn [mm] \emptyset \ne [/mm] M* [mm] \subseteq [/mm] M gilt und [mm] \forall [/mm] a, b [mm] \in [/mm] M* auch a * [mm] b^{-1} \in [/mm] M* gilt.

Allerdings ist die Operation [mm] "\times" [/mm] in [mm] \IZ [/mm] ja nicht definiert... Sodass ich da nicht ohne weiteres schließen können dürfte. Gibt's irgendeinen schönen (einfachen, klaren) Weg, die Assoziativität zu zeigen?

        
Bezug
Nachweis der Assoziativität: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Sa 05.04.2008
Autor: DaMazen

Sollte doch möglichsein,

schon Probiert (a [mm] \times [/mm] b) [mm] \times [/mm] c = a [mm] \times [/mm] (b [mm] \times [/mm] c)  einsetzen ausrechnen und dann sollte das gleiche raus kommen. So löst man die dochimmer, wenn es assoziativ ist, muss die Gleichung stimmen.

Bezug
                
Bezug
Nachweis der Assoziativität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Sa 05.04.2008
Autor: Teradil

Dass das so geht, ist mir schon klar... nur wenn du dir die Verkknüpfungsdefinition anguckst, kommen am Ende zwei sehr unterschiedliche Sachen mit doppelten Exponenten raus, die einfach nur häßlich sind... :-/ Deswegen die Frage, ob es evtl. auch einfacher gehen könnte...> Sollte doch möglichsein,
>  



Bezug
                        
Bezug
Nachweis der Assoziativität: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Sa 05.04.2008
Autor: angela.h.b.

Hallo,

hast Du es schonmal mit Fallunterscheidungen versucht, je nachdem, ob a,b,c gerade oder ungerade sind? Durchgerechnet habe ich's nicht, aber der Weg erscheint mir verheißungsvoll.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]