matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieNachweis Sigma-Algebren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Nachweis Sigma-Algebren
Nachweis Sigma-Algebren < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachweis Sigma-Algebren: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 10:14 Mo 25.05.2009
Autor: kegel53

Aufgabe
Seien [mm] \Omega,\Omega'\not= \emptyset [/mm] und f eine Funktion von [mm] \Omega [/mm] nach [mm] \Omega'. [/mm] Sei F eine [mm] \sigma-Algebra [/mm] in [mm] \Omega, [/mm] F' eine [mm] \sigma-Algebra [/mm] in [mm] \Omega'. [/mm] Zeigen Sie:

a) [mm] F(f):=\{f^{-1}(B)|B\in F'\} [/mm] ist eine [mm] \sigma-Algebra [/mm] in [mm] \Omega. [/mm]

b) [mm] G':=\{B\in F'|f^{-1}(B)\in F\} [/mm] ist eine [mm] \sigma-Algebra [/mm] in [mm] \Omega'. [/mm]

c) Drücken Sie die Eigenschaft "f ist F-F'-messbar" einerseits mit Hilfe von F' und andererseits mit Hilfe von G'aus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo MatheRaum-Team,
es wäre richtig klasse, wenn mir jemand bei der Aufgabe etwas Hilfestellung geben könnte. Klar ist mir, dass man jeweils die 3 Bedingungen einer [mm] \sigma-Algebra [/mm] nachprüfen muss, allerdings gibt es da etwas Probleme.
Bisher hab ich mir folgendes überlegt:
zu a)
i)Mir ist klar, dass [mm] \Omega\in [/mm] F(f)
ii) Sei nun [mm] A\in [/mm] F(f). Dann muss auch gelten [mm] A^c\in [/mm] F(f).
Es ist doch [mm] A\in F(f)\Rightarrow A=f^{-1}(B) \Longleftrightarrow B=f(A)\in [/mm] F'. Und da stockts dann auch schon. Muss ich jetz zeigen, dass auch [mm] f(A^c)\in [/mm] F' und wenn ja wie gehe ich dann weiter vor?
Ich bedanke mich schon mal im Voraus für mögliche Tipps, Lösungsvorschläge und dergleichen.

        
Bezug
Nachweis Sigma-Algebren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 Mo 25.05.2009
Autor: kegel53

Hey Leute,
also ich wäre immer noch an einer Antwort interessiert und würde mich freuen, wenn mir jemand helfen könnte. Danke mal.

Bezug
        
Bezug
Nachweis Sigma-Algebren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Mo 25.05.2009
Autor: vivo

Hallo,

also in deiner Menge

[mm]F(f):=\{f^{-1}(B)|B\in F'\}[/mm]

sind doch alle Urbilder von Ereignissen aus F'. Jetzt musst du zeigen, dass zu einem solchen Element (Urbild) auch das Komplement drinn ist. Was ist denn das Komplement eines solchen Urbildes, wenn du beachtest dass f [mm] \Omega [/mm] auf [mm] \Omega [/mm] ' abbildet ?

gruß

Bezug
                
Bezug
Nachweis Sigma-Algebren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:35 Mo 25.05.2009
Autor: kegel53

Na ich würd sagen das Komplement eines Urbildes muss dann wieder irgendein Urbild sein. Ich hab mir das so gedacht:
Falls [mm] A^c\in [/mm] F(f) dann muss gelten [mm] A^c=f^{-1}(C) [/mm] mit einem [mm] C\in [/mm] F' [mm] \Rightarrow C=f(A^c) [/mm]
Aber [mm] f(A^c) [/mm] kann nur in [mm] \Omega' [/mm] liegen wo denn auch sonst und damit gilt dann auch [mm] C=f(A^c)\in [/mm] F'
[mm] \Rightarrow A^c\in [/mm] F(f)

Sind die Überlegungen so richtig oder liege ich da völlig falsch?

Es wär auch klasse, wenn jemand noch an paar Worte zu c) verlieren könnte also was es mit diesem F-F'-messbar auf sich hat und wie ich das durch F' und G' ausdrücken kann. Vielen Dank!!!

Bezug
                        
Bezug
Nachweis Sigma-Algebren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:20 Di 26.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]