matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisNachdifferenzieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Nachdifferenzieren
Nachdifferenzieren < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachdifferenzieren: Frage
Status: (Frage) beantwortet Status 
Datum: 16:13 Do 30.06.2005
Autor: Yuki

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Prinzipiell hab ich das mit der Ableitung ja verstanden, also, Kettenregel usw. Nur das mit dem Nachdifferenzieren hab ich noch nicht ganz raus. Meine Frage ist: Wann muss ich nachdifferenzieren und wie sieht das aus, vor allem, wenn mehrere Regeln angewandt werden müssen?

danke

        
Bezug
Nachdifferenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Do 30.06.2005
Autor: TranVanLuu

Hallo und

[willkommenmr]

Hm, warum man das machen muss, kann ich nicht so einfach erklären...das erklärt sich mit der Herleitung der Regel....
Aber dass man es machen muss wird schnell einsichtig, wenn man sich z.B. folgedens betrachtet:

[mm] (x^2)^3 [/mm]

würde man nur die äußere Ableitung bilden, käme man auf 3 * [mm] ({x}^2)^2 [/mm] = [mm] 3x^4 [/mm]
wandelt man aber vorher  in x^(6) um erhält man als Ableitung [mm] 6x^5, [/mm] das zeigt also, dass da noch was gemacht werden muss, damit es richtig wird.

Wie man herangehen kann:

Nehmen wir als Beispiel:

f(x) = [mm] e^x [/mm] * [mm] \bruch{1}{x^2-x} [/mm]
jetzt legen wir fest:

[mm] u=e^x [/mm] und v= [mm] \bruch{1}{x^2-x} \Rightarrow [/mm] f(x) = u * v (wobei u und v beide von x abhängen!!)

Damit ist f'(x) = u' * v + v' *u (Produktregel)

nun ist v aber wieder eine Verkettung, wenn du z.B. z = [mm] x^2-x [/mm] setzt, dann haben wir v = [mm] \bruch{1}{z} [/mm] und v' = z' * [mm] (\bruch{-1}{z^2} [/mm] Kettenregel. So hast du alles relativ übersichtlich geschrieben und erhälst nun:

f'(x) = u' * v + z' * [mm] (\bruch{-1}{z^2} [/mm] * u

das sieht jetzt vielleicht furchtbar aus, weil soviele Variablen vorkommen, aber wenn du Rechnungen z.B. auf der linken Seite des Heftes/Zettels durchführst und dir getrennt davon auf der rechten Seite sauber notierst, was du wie ersetzt hast, kannst du das nachher sehr schön einfach zusammensuchen und behälst eine gute Übersicht!

[mm] \Rightarrow [/mm] f'(x) = [mm] e^x [/mm] * [mm] \bruch{1}{x^2-x} [/mm] + [mm] (2x-1)*\bruch{-1}{(x^2-x)^2} [/mm]

Wichtig dabei ist, dass du alles, was von x abhängt, auch immer so behandelst, also dass z keine konstante ist, die wegfällt, sondern, dass du erstmal z' hinschreibst und in einem nächsten Schritt z'(x) berechnest!!

Ich hoffe, das hilft dir etwas weiter

Gruß Tran

Bezug
        
Bezug
Nachdifferenzieren: Faustregel
Status: (Antwort) fertig Status 
Datum: 17:54 Do 30.06.2005
Autor: Zwerglein

Hi, Yuki,

am besten, Du hältst Dich zunächst mal an die Faustregel:
"Klammern werden nachdifferenziert!"

Beispiele:

(1) f(x) = [mm] (x^{2}-3)^{5}; [/mm]  => f'(x) = [mm] 5*(x^{2}-3)^{4}*2x [/mm] = [mm] 10x*(x^{2}-3)^{4} [/mm]

(2) f(x) = sin(3x+4);   => f'(x) = cos(3x+4)*3 = 3*cos(3x+4)

(3) f(x) = [mm] e^{x^{2}+x} [/mm]  schreib' ich z.B. immer so:   f(x) = [mm] e^{(x^{2}+x)}; [/mm]

  =>  f'(x) =  [mm] e^{(x^{2}+x)}*(2x+1) [/mm]  = [mm] (2x+1)*e^{(x^{2}+x)} [/mm]

(4) f(x) = [mm] ln(x^{4}+2) [/mm]  =>  f'(x) = [mm] \bruch{1}{x^{4}+2}*4x^{3} [/mm] = [mm] \bruch{4x^{3}}{x^{4}+2} [/mm]

Kommst Du nun ein bissl weiter?



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]