matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenNach X auflösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Nach X auflösen
Nach X auflösen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nach X auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Sa 15.12.2012
Autor: Trick21

Aufgabe
Löse nach x auf:

e^2x [mm] (x^2+2x+1)=0 [/mm]

Hallo Leute ich bin folgendermaßen dabei vorgegangen:

[mm] e^2x(x+1)^2 [/mm] = 0

müsste ich jetzt die Wurzel ziehen um folgendes zu erhalten:

[mm] (e^2x)^1/2 [/mm] (x+1) = 0 und dann irgendwie weiter machen, wobei ich allerdings nicht wüsste wie..?!

oder

ist mein Ergebnis einfach x = -1, weil dann die Klammer 0 wird mit der ich den Exponential-Term multiplizieren würde..?

Kann mir da bitte Jemand weiter helfen?

Ich habe diese Frage in keinem anderen Forum gestellt.
Liebe Grüße Trick21

        
Bezug
Nach X auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Sa 15.12.2012
Autor: Diophant

Hallo,

soll das so heißen:

[mm] e^{2x}*(x^2+2x+1)=0 [/mm]

oder so:

[mm] e^2*x*(x^2+2x+1)=0 [/mm]

?

Natürlich, die erste Version ist naheliegend und vermutlich auch gemeint. Dann ist dein Ansatz:

> ist mein Ergebnis einfach x = -1, weil dann die Klammer 0
> wird mit der ich den Exponential-Term multiplizieren
> würde..?

korrekt. Wobei man ganz korrekt schreiben müsste

[mm] x_{1,2}=-1 [/mm]

um anzudeuten, dass es sich um eine Doppellösung handelt. Das hat eine ganz prtaktische Bedeutung. Wenn nämlich die linke Seite eine Funktion ist dann ist x=-1 nicht nur einfach eine Nullstelle dieser Funktion sondern eine Extremstelle.

> Löse nach x auf:
>
> e^2x [mm](x^2+2x+1)=0[/mm]
> Hallo Leute ich bin folgendermaßen dabei vorgegangen:
>
> [mm]e^2x(x+1)^2[/mm] = 0
>
> müsste ich jetzt die Wurzel ziehen um folgendes zu
> erhalten:
>
> [mm](e^2x)^1/2[/mm] (x+1) = 0 und dann irgendwie weiter machen,
> wobei ich allerdings nicht wüsste wie..?!

Die Wurzel zu ziehen würde zwar hier auch gehen, du könntest noch

[mm] \wurzel{e^{2x}}=e^x [/mm]

verwenden, aber es ist die schlechtere Alternative. Besser verwendest du wie oben den Satz vom Nullprodukt und beachtest, dass die Gleichung

[mm] x^n=0 [/mm]

die n-fache Lösung x=0 besitzt.


Gruß, Diophant

Bezug
                
Bezug
Nach X auflösen: danke:-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:54 Sa 15.12.2012
Autor: Trick21

super, dann lag ich ja richtig mit meiner Vermutung:-)
vielen  Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]