matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikNabla Operator
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Nabla Operator
Nabla Operator < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nabla Operator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Sa 07.05.2011
Autor: Theoretix

Aufgabe
Sei [mm] \Phi:\IR^3\to\IR [/mm] ein Skalarfeld.
Was erhält man bei rechtsseitiger Anwendung des Nabla Operators, wie folgt:

[mm] \Phi\cdot \vec{\nabla} [/mm]  ?

Hallo,

die Frage stelle ich mir grade selber: Der Nabla Operator wirkt ja immer rechts auf ein Skalar/Vektorfeld... Wenn ich jetzt jedoch von links mit einem Skalarfeld multipliziere, was ist das Ergebnis davon-ein Skalar oder Vektorfeld?

Nabla selbst wird doch irgendwie als „Vektor“ mit [mm] \nabla=(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z})... [/mm]

Wäre nett, wenn mir da schnell jemand helfen könnte!

Gruß

        
Bezug
Nabla Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Sa 07.05.2011
Autor: Event_Horizon

Hallo!

Du hast völlig recht, der Nabla-Operator ist sowas wie ein Vektor. Da steckt nix weiter hinter, und demnach ist die Lösung auch banal.

Die Ableitungen werden nicht ausgeführt, denn wie du schon erkannt hast, der Nabla-Operator wirkt auf etwas, was rechts von ihm steht, und das ist hier nicht gegeben.

Es wird also weiterhin ein Ableitungsoperator bleiben.


Bezug
                
Bezug
Nabla Operator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:07 Sa 07.05.2011
Autor: Theoretix

Alles klar, danke dir für die Antwort!



Bezug
                        
Bezug
Nabla Operator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:30 Sa 07.05.2011
Autor: Theoretix

Sind diese Darstellungen denn Äquivalent, d.h. darf man schreiben:

(Seien [mm] \Omega [/mm] und [mm] \Phi [/mm] Skalarfelder: [mm] \IR^3\to\IR) [/mm]

[mm] \nabla\Omega(\nabla\Phi)=\nabla\Phi(\nabla\Omega) [/mm]

??

Gruß

Bezug
                                
Bezug
Nabla Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 00:24 So 08.05.2011
Autor: leduart

Hallo
auf die antwort kommst du selbst, das ist doch ein skalarprodukt aus 2 vektoren.
gruss leduart


Bezug
                                        
Bezug
Nabla Operator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 So 08.05.2011
Autor: Theoretix

Stimmt natürlich!
Danke dir.

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]