matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikNabla-Operator Skalarfeld
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Nabla-Operator Skalarfeld
Nabla-Operator Skalarfeld < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nabla-Operator Skalarfeld: Problem mit Vektorschreibweise
Status: (Frage) beantwortet Status 
Datum: 06:56 Do 28.11.2013
Autor: zach_

Aufgabe
Geben Sie für ein skalares Feld [mm] f(\vec{r}) [/mm] folgende Ausdrücke in kartesischen Koordinaten an:

[mm] \nabla f(\vec{r}) [/mm]
[mm] \Delta f(\vec{r}) [/mm]
[mm] \nabla f(|\vec{r}|) [/mm]

Hallo,
mein Problem ist, dass aus der Aufgabe nicht hervorgeht in welcher Dimension das ganze stattfindet (statt z.B. x,y,z welche die 3. Dimension angeben ist hier nur [mm] \vec{r} [/mm] gegeben). Die weiteren Vorgänge erschließen sich mir, nur kenne ich diese Form für den Nabla-Operator nicht.
Wäre nett, wenn jemand weiterhelfen könnte.

Gruß
zach

        
Bezug
Nabla-Operator Skalarfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 07:29 Do 28.11.2013
Autor: Richie1401

Hallo zach,

da es sich bei deiner Aufgabe um eine physikalische handelt, kann man durchaus davon ausgehen, dass [mm] \vec{r} [/mm] sich im dreidimensionalen abspielt.

> Geben Sie für ein skalares Feld [mm]f(\vec{r})[/mm] folgende
> Ausdrücke in kartesischen Koordinaten an:
>  
> [mm]\nabla f(\vec{r})[/mm]
>  [mm]\Delta f(\vec{r})[/mm]
>  [mm]\nabla f(|\vec{r}|)[/mm]
>  
> Hallo,
>  mein Problem ist, dass aus der Aufgabe nicht hervorgeht in
> welcher Dimension das ganze stattfindet (statt z.B. x,y,z
> welche die 3. Dimension angeben ist hier nur [mm]\vec{r}[/mm]
> gegeben). Die weiteren Vorgänge erschließen sich mir, nur
> kenne ich diese Form für den Nabla-Operator nicht.

Dies verstehe ich nicht. Was erschließt sich dir nicht?

[mm] \nabla [/mm] ist ja denke ich klar, wie sich dies auf ein Skalarfeld auswirkt, oder?
[mm] \nabla\equiv\left(\partial_x,\partial_y,\partial_z\right) [/mm] (zumindest im dreidimensionalen)

[mm] \Delta [/mm] bezeichnet wiederum den Laplace-Operator und es gilt [mm] \Delta=\nabla\cdot\nabla. [/mm]

>  Wäre nett, wenn jemand weiterhelfen könnte.
>  
> Gruß
>  zach


Bezug
                
Bezug
Nabla-Operator Skalarfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:40 Do 28.11.2013
Autor: zach_

Hi,
ich weiß wie sich [mm] \Nabla [/mm] auf ein skalarfeld auswirkt. Ich habe bisher aber immer angaben zur Dimension gehabt, welche ich nun mit [mm] \vec{r} [/mm] nicht habe.

Meine bisherige Lösung wäre:

[mm] \nabla f(\vec{r})= \bruch{\partial f(\vec{r})}{\partial x}+ [/mm] ...+ [mm] \bruch{\partial f(\vec{r})}{\partial n} [/mm]

aber ich bin mir sehr unsicher, ob ich das so schreiben kann.

Bezug
                        
Bezug
Nabla-Operator Skalarfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 07:53 Do 28.11.2013
Autor: Richie1401


> Hi,
>  ich weiß wie sich [mm]\Nabla[/mm] auf ein skalarfeld auswirkt. Ich
> habe bisher aber immer angaben zur Dimension gehabt, welche
> ich nun mit [mm]\vec{r}[/mm] nicht habe.
>  
> Meine bisherige Lösung wäre:
>  
> [mm]\nabla f(\vec{r})= \bruch{\partial f(\vec{r})}{\partial x}+[/mm]
> ...+ [mm]\bruch{\partial f(\vec{r})}{\partial n}[/mm]

Das geht schon gar nicht, weil f ein skalares Feld ist. Also eine Summe ist hier nicht möglich.
Du kannst hier nur mit Summen arbeiten, wenn du die entsprechenden kartesischen Einheitsvektoren noch mit an die Summanden heftest. Dann macht es wieder Sinn.

Es ist ja [mm] \vec{r}=(x,y,z). [/mm] Und somit [mm] f(\vec{r})=f((x,y,z)) [/mm]

[mm] \nabla{}f((x,y,z))=\left(\partial_x f((x,y,z)),\partial_y f((x,y,z)),\partial_z f((x,y,z))\right) [/mm]

Wenn du nun wirklich scharf darauf bist, endliche viele Variablen zu benutzen, dann erweitert sich der entstandene Vektor nur. Benutze dazu aber am besten folgende Bezeichung:
[mm] \vec{r}=(x_1,x_2,x_3,\ldots,x_n) [/mm]

Die Frage die man sich eben stellen sollte: Kann man noch etwas an der entstandenen Form berechnen. Deutlich wird dies vor allem bei der dritten Teilaufgabe.

>  
> aber ich bin mir sehr unsicher, ob ich das so schreiben
> kann.


Bezug
                                
Bezug
Nabla-Operator Skalarfeld: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:38 Do 28.11.2013
Autor: zach_

Der Übungsgruppenleiter meint, das ganze kann ich ruhig 3-dimensional lösen. Ich komme nun nach einigen Versuchen ebenfalls auf deine Schreibweise.
Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]