matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1N für Epsilon
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - N für Epsilon
N für Epsilon < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

N für Epsilon: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Sa 12.02.2011
Autor: kushkush

Aufgabe
Bestimme [mm] $N\in \IN$ [/mm] so, dass [mm] $|\frac{n-1}{n+1}-1|<\epsilon$ $\forall [/mm] n>N$.

Hallo,


$0<2$
[mm] $\Rightarrow [/mm] n-1<n+1$
[mm] $\Rightarrow \frac{n-1}{n+1}<1$ [/mm]

Also ist der Betrag immer negativ solange er nicht 0 ist... Also könnte man umschreiben (oder auch einfach von Anfang an das 1 im Betrag erweitern mit n+1):

[mm] $|\frac{n-1}{n+1}-1|=1-\frac{n-1}{n+1} [/mm] < [mm] \epsilon$ [/mm]
[mm] $\Rightarrow \frac{n+1-n-1}{n+1}<\epsilon$ [/mm]

Also wäre das N=0 ??


Ich habe diese Frage in keinem anderen Forum gestellt.



Danke und Gruss

kushkush

        
Bezug
N für Epsilon: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Sa 12.02.2011
Autor: kamaleonti

Hi,
> Bestimme [mm]N\in \IN[/mm] so, dass [mm]|\frac{n-1}{n+1}-1|<\epsilon[/mm]
> [mm]\forall n>N[/mm].
>  Hallo,
>  
>
> [mm]0<2[/mm]
>  [mm]\Rightarrow n-1
>  [mm]\Rightarrow \frac{n-1}{n+1}<1[/mm]
>
> Also ist der Betrag immer negativ solange er nicht 0 ist...
> Also könnte man umschreiben (oder auch einfach von Anfang
> an das 1 im Betrag erweitern mit n+1):
>
> [mm]|\frac{n-1}{n+1}-1|=1-\frac{n-1}{n+1} < \epsilon[/mm]
> [mm]\Rightarrow \frac{n+1-n-1}{n+1}<\epsilon[/mm]
>
> Also wäre das N=0 ??

Nein. N muss doch irgendwie von [mm] \varepsilon [/mm] abhängig sein.
Es soll doch gelten [mm] \frac{n+1-n-1}{n+1}=\frac{2}{n+1}<\frac{2}{n}\leq\varepsilon. [/mm] Das musst du nur noch nach n umstellen und schon bist du fertig und hast dein N.

Gruß


Bezug
                
Bezug
N für Epsilon: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 Sa 12.02.2011
Autor: kushkush

Hallo kamaleonti,

Ich sehe meine Rechenfehler! Da müsste also wie bei dir [mm] $\frac{2}{n+1}$ [/mm] rauskommen. Wieso hast du den Schritt von [mm] $\frac{2}{n+1}$ [/mm] zu [mm] $\frac{2}{n+1}<\frac{2}{n}$ [/mm]  gemacht?

Demnach wäre das  
[mm] $\frac{2-\epsilon}{\epsilon} [mm] $\Rightarrow 2 [mm] $\Rightarrow \frac{2}{n+1}<\epsilon$ [/mm]

nicht richtig odeR?



Danke!!


Gruss

kushkush

Bezug
                        
Bezug
N für Epsilon: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Sa 12.02.2011
Autor: kamaleonti

Hallo kushkush,

> Ich sehe meine Rechenfehler! Da müsste also wie bei dir
> [mm]\frac{2}{n+1}[/mm] rauskommen. Wieso hast du den Schritt von
> [mm]\frac{2}{n+1}[/mm] zu [mm]\frac{2}{n+1}<\frac{2}{n}[/mm]  gemacht?

Weil sich [mm] \frac{2}{n}\leq\varepsilon [/mm] wesentlich leicher nach n umstellen lässt ;-)

>  
> Demnach wäre das  
> [mm]\frac{2-\epsilon}{\epsilon}
>  [mm]\Rightarrow 2
>  [mm]\Rightarrow \frac{2}{n+1}<\epsilon[/mm]
>  
> nicht richtig odeR?

Doch schon, aber wenn du [mm] $\frac{2}{n}\leq\varepsilon$ [/mm] in [mm] $n\geq\frac{2}{\varepsilon}$ [/mm] umformst, ist es schöner.

Gruß

Bezug
                                
Bezug
N für Epsilon: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:08 Sa 12.02.2011
Autor: kushkush

Ok!


Dankesehr.




Gruss

kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]