matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenNST gebr.rationale Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - NST gebr.rationale Fkt.
NST gebr.rationale Fkt. < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

NST gebr.rationale Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Sa 22.03.2008
Autor: Amy1988

Hallo!

Ich bin wieder mal an einer Kurvendiskussion!
Diesmal eine geborchenrational und wie ich mir schon angelesen habe, ist es da bei der Nullstellenbestimmung so, dass man nur den Zähler nullsetzt, ist ja klar, weil man will es sich ja nciht umständlicher machen, als nötig :)

Ich untersuche diese Funktion
[mm] f_t(x) [/mm] = [mm] \bruch{t}{2}*x [/mm] + [mm] \bruch{t}{x-t} [/mm]

Mein Problem ist, dass ich nicht weiß, was ich jetzt genau nullsetzen muss?!
Als ich die Definitionslücken errechnet habe, habe ich ein fach
x-t = 0
gesetzt, weil bei dem anderen Summanden  die Funktionvariable ja nicht im Nenner vorkommt...
Aber jetzt bei der Nullstellenberechnung bin ich mir unsicher.
Kann mir vielleicht jemand helfen und es mir verständlich erklären?

LG, AMY

        
Bezug
NST gebr.rationale Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Sa 22.03.2008
Autor: steppenhahn

Das mit den Definitionslücken hast du richtig gemacht.
Für die Nullstellen:
Am Einfachsten ist es, du verwandelst die bisherige Funktion in eine "richtige" gebrochenrationale Funktion, d.h. du ziehst auch den ungebrochenen Teil auf den Bruch:

[mm]f_{t}(x) = \bruch{t}{2}*x + \bruch{t}{x-t}[/mm]

   [mm]= \bruch{\bruch{t}{2}*x*(x-t)}{x-t} + \bruch{t}{x-t}[/mm]

   [mm]= \bruch{\bruch{t}{2}*x*(x-t) + t}{x-t}[/mm]

Nun kannst du den Zähler = 0 setzen und erhältst wirklich alle Nullstellen. [mm] (\to [/mm] wird eine Quadratische Funktion.)

Übrigens kannst du natürlich auch einfach die eigentliche Funktion = 0 setzen. Nullstellen heißt ja einfach, alle x herausfinden bei denen die Funktion 0 wird. D.h. eigentlich kannst du auch die Gleichung

[mm]f_{t}(x) = \bruch{t}{2}*x + \bruch{t}{x-t} = 0[/mm]

lösen. Dazu müsstest du rechnen:

[mm]\gdw \bruch{t}{x-t} = -\bruch{t}{2}*x[/mm]

[mm]\gdw t = -\bruch{t}{2}*x*(x-t)[/mm]

[mm]\gdw t + \bruch{t}{2}*x*(x-t) = 0[/mm]

...

Aber du siehst: Im grunde läuft es bei beiden Varianten der Nullstellenbestimmung auf dasselbe hinaus.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]