matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenNS-Bestimmung bei e-Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - NS-Bestimmung bei e-Funktionen
NS-Bestimmung bei e-Funktionen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

NS-Bestimmung bei e-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 So 19.03.2006
Autor: beachbulette

Aufgabe
Nullstellenbestimmung von x*e^-0,5x

hallo zusammen, ich habe ein problem mit der oben stehenden aufgabe. ich hab mir im taschenrechner die nullstellen der funktion zunächst berechnen lassen und es dann auch schriftlich versucht. ich bin dabei wie folgt vorgegangen:

x*e^-0,5x = 0 |:x
e^-0,5x = 0 | ln (logarithmus zur basis e)
-0,5x = 0 |:(-0,5)
x= 0

so, das würde mit der lösung im taschenrechner übereinstimmen, da dort f(x) auch eine nullstelle im punkt (0/0) hat. das ist für mich alles nachzuvollziehen, da ln ja die umkehrfunktion von e^... ist. wenn ich mir aber die funktion [mm] 4x/e^0,5x [/mm] nehme und versuche, den definitionsbereich zu bestimmen, muss ich den nenner gleich 0 setzen, um nach definitionslücken zu gucken. [mm] e^0,5x [/mm] = 0 würde da dann stehen. jetzt komme ich zu meiner frage, denn ich weiß nicht, ob das eine ungleichung ist und somit falsch wäre, da [mm] e^0 [/mm] = 1 ist, oder ob ich auch hier den logarithmus nehmen kann und dann folgendes da stehen habe:

[mm] e^0,5x [/mm] = 0 |ln
0,5x = 0 |:0,5
x = 0

was ist nun richtig?? danke schon mal im voraus für die mühen.

gruß aus osnabrück


tobias


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
NS-Bestimmung bei e-Funktionen: Logarithmus von 0?
Status: (Antwort) fertig Status 
Datum: 16:54 So 19.03.2006
Autor: Bastiane

Hallo!

> Nullstellenbestimmung von x*e^-0,5x

Benutze doch bitte unseren Formeleditor. Damit sieht die Funktion dann so aus: [mm] f(x)=e^{-0,5x} [/mm]

>  hallo zusammen, ich habe ein problem mit der oben
> stehenden aufgabe. ich hab mir im taschenrechner die
> nullstellen der funktion zunächst berechnen lassen und es
> dann auch schriftlich versucht. ich bin dabei wie folgt
> vorgegangen:
>  
> x*e^-0,5x = 0 |:x
>  e^-0,5x = 0 | ln (logarithmus zur basis e)

[notok] Was ist denn der Logarithmus von 0? Der ist überhaupt nicht definiert!!!

>  -0,5x = 0 |:(-0,5)
>  x= 0

Eine Funktion der Form "e hoch irgendwas" wird nie gleich Null, deswegen kann in deinem Fall hier dieses Produkt nur =0 werden, wenn x=0 ist, da dann dort steht: [mm] 0*e^{-0,5*0}=0. [/mm]
  

> so, das würde mit der lösung im taschenrechner
> übereinstimmen, da dort f(x) auch eine nullstelle im punkt
> (0/0) hat. das ist für mich alles nachzuvollziehen, da ln
> ja die umkehrfunktion von e^... ist. wenn ich mir aber die
> funktion [mm]4x/e^0,5x[/mm] nehme und versuche, den
> definitionsbereich zu bestimmen, muss ich den nenner gleich
> 0 setzen, um nach definitionslücken zu gucken. [mm]e^0,5x[/mm] = 0
> würde da dann stehen. jetzt komme ich zu meiner frage, denn
> ich weiß nicht, ob das eine ungleichung ist und somit
> falsch wäre, da [mm]e^0[/mm] = 1 ist, oder ob ich auch hier den
> logarithmus nehmen kann und dann folgendes da stehen habe:
>  
> [mm]e^0,5x[/mm] = 0 |ln
>  0,5x = 0 |:0,5
>  x = 0
>  
> was ist nun richtig?? danke schon mal im voraus für die
> mühen.

Wie oben darfst du auch hier nicht den Logarithmus von 0 nehmen. Die Funktion [mm] e^{0,5x} [/mm] wird nirgendwo =0.

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]