matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperMultiplikationstabelle Ring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Multiplikationstabelle Ring
Multiplikationstabelle Ring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multiplikationstabelle Ring: Hinweis
Status: (Frage) beantwortet Status 
Datum: 20:55 Fr 29.11.2013
Autor: Petrit

Aufgabe
Sei [mm] p\in\IN. [/mm] Für [mm] n\in\IZ [/mm] defi nieren wir [n] als die Äquivalenzklasse von n: [n] := [mm] \{m\in\IZ | p teilt m - n \}. [/mm] Auf der Menge [mm] \IZ_{p} [/mm] aller solchen Äquivalenzklassen defi nieren wir eine Addition und eine Multiplikation durch [m] + [n] := [m + n] sowie
[m]*[n] = [mn]. Damit wird [mm] \IZ_{p} [/mm] ein Ring. Dies ist im Weiteren nicht zu zeigen.

Zu bestimmen:
1) Jeweils in [mm] \IZ_{3} [/mm] und [mm] \IZ_{4} [/mm] alle Lösungen der Gleichung [2]*x = [2] sowie der Gleichung [mm] [2]*x^2 [/mm] = [2]*x.
2) Ist [mm] \IZ_{4} [/mm] ein Körper?


Hi!
Ich versteh mal wieder was nicht ganz.
Ich habe bereits anhand einer Multiplikationstabelle die Äquivalenzklasse [2] bestimmt, aber jetzt bin ich mir nicht sicher, was ich da zeigen soll. Was soll dieses x bzw. [mm] x^2 [/mm] bedeuten. Ist das einfach die Spalte mit der [2] multipliziert wieder [2] ergibt? Oder doch was ganz anderes? und wie soll das dann bei [mm] [2]*x^2 [/mm] = [2]*x aussehen?

Desweiteren soll ich zeigen, ob [mm] \IZ_{4} [/mm] ein Körper ist. Wie soll ich da verfahren? Wie kann ich das zeigen?

Ich wäre sehr dankbar für ein paar Hinweise bezüglich meiner Fragen?

Ich bedanke mich schonmal im Voraus für die Mühen!

Viele Grüße, Petrit!

        
Bezug
Multiplikationstabelle Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 Fr 29.11.2013
Autor: Diophant

Hallo,

das x ist eine Unbekannte, was sonst? :-)
Mit dem einzigen Unterschied natürlich, das sie nur Werte aus der hier zugrundeliegenden Struktur annimmt. x steht also jeweils für die Äquivalenzklassen, welche die Gleichung erfüllen. Die Schwierigkeit bei der Lösung der Gleichung ist ja eben die, dass du bis jetzt nur einen Ring hast und damit keine Division.

Damit sollte auch klar sein, was im Fall von [mm] \IZ_4 [/mm] noch zu prüfen ist: besitzt dort die Multiplikation ein Inverses?

Gruß, Diophant

Bezug
                
Bezug
Multiplikationstabelle Ring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 Fr 29.11.2013
Autor: Petrit

[mm] \IZ_{3}: [/mm] [2]*x=[2] habe ich [2]*[1]=[2]
               [mm] [2]*x^2=[2]*x [/mm] habe ich [mm] [2]*[1]^2=[2]*[1] [/mm]
[mm] \IZ_{4}: [/mm] [2]*x=[2] habe ich [2]*[1]=[2], [2]*[3]=2*[3]
               [mm] [2]*x^2=[2]*x [/mm] habe ich [mm] [2]*[1]^2=[2]*[1], [2]*[3]^2=[2]*[3] [/mm]

Habe ich das so richtig verstanden?

[mm] \IZ_{4} [/mm] ist kein Körper, da z.B. das inverse Element von 3 = [mm] 3^{-1} [/mm] = 1/3 wäre, da das allerdings die ganzen Zahlen sind, kann dies nicht stimmen. Ist das soweit korrekt, oder muss ich das anders zeigen?

Bezug
                        
Bezug
Multiplikationstabelle Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 01:38 Sa 30.11.2013
Autor: leduart

Hallo
was ist nun x in den 2 mal 2 Fällen-
wenn du die Gleichung ohne Aquivalenzklassen löst schreibst du doch auch nicht hin
2x=  2  2*1=2*1

Du kannst mit Inversen nicht so rechnen. Du sagst du hast die Multiplikationstabelle,
darin steht in [mm] Z_3: [/mm]  2*2=1 also ist 2 multipl. Inverses zu 2
in [mm] Z_4 [/mm] gilt  3*3=1   also ist 3 invers zu 3, aber such ein Inverses zu 2, Aber 1/2 ist einfach kein Inverses zu 2 sowenig wie 1/3 Inverses zu 3 ist, denn das gilt nur in Q
Inverse findest du in deiner Tabelle, wenn es sie gibt.

Bezug
                                
Bezug
Multiplikationstabelle Ring: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:06 Sa 30.11.2013
Autor: Petrit

Okay, aber soll ich nicht zeigen, dass [2]*x= [2] rauskommt und nicht [1] oder versteh ich da was falsch?

Bezug
                                        
Bezug
Multiplikationstabelle Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Sa 30.11.2013
Autor: leduart

Hallo Petrit
Das kannst du zwar schreiben, das ist die Probe also x=[1]  denn ...
und im anderen fall [mm] x_1=[1] [/mm] und [mm] x_2=[3] [/mm] denn ....
übrigens: wir sind kein chat room. man begrüßt sich usw. manche bedanken sich sogar für Hilfe.
Gruss leduart

Bezug
                                                
Bezug
Multiplikationstabelle Ring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 Sa 30.11.2013
Autor: Petrit

Entschuldigung, war nicht so gemeint. Ich bin sehr dankbar für eure Hilfe. Bin aber im Moment leider ein bisschen im Stress wegen dem Studium, aber in Zukunft werde ich meinen Umgangston wieder etwas freundlicher gestalten. Also nochmals vielen Dank für eure freiwillige Hilfe.

Viele Grüße, Petrit!

Bezug
                                                
Bezug
Multiplikationstabelle Ring: Rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:03 Sa 30.11.2013
Autor: Petrit

Nochmals danke für deine Hilfe!
Habe jetzt alles gelöst, außer, ob [mm] \IZ_{4} [/mm] ein Körper ist. Wie könnte ich das zeigen? Ich müsste ja zeigen, dass es ein inverses Element gibt und dass es sich um einen kommutativen Ring handelt. Wie könnte ich das hier zeigen? Könnte mir da bitte jemand auf die Sprünge helfen, ich stehe gerade völlig auf'm Schaluch! Wäre echt super!

Viele Grüße, Petrit!

Bezug
                                                        
Bezug
Multiplikationstabelle Ring: Gelöst!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:17 Sa 30.11.2013
Autor: Petrit

Tschuldigung!
Die Frage hat sich erledigt, bin selbst drauf gekommen. Hab die Frage wohl zu früh gestellt. Trotzdem danke an alle, die sich bereits mit dieser Frage beschäftigt hatten.

Viele Grüße, Petrit!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]