matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMultiplikation von Dichtefkt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Multiplikation von Dichtefkt
Multiplikation von Dichtefkt < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multiplikation von Dichtefkt: Dichtefunktion
Status: (Frage) beantwortet Status 
Datum: 17:10 Mo 19.04.2010
Autor: minus2000

Hallo,
ich habe eine Frage:
Wenn ich an einem Punkt die jeweilige Dichtefunktion von der Geschwindigkeit und Höhe habe:
Ist es möglich die Dichtefunktionen so zu multiplizieren, dass ich die Totalenergie bekomme.
Oder anders: Kann man Dichtefunktionen einfach nicht linear verknüpfen
[mm] (1/2mv^2 [/mm] +mgh)

Ich möchte nicht erst aus Geschwindigkeit  und Höhe die Totalenergie bestimmen und dann daraus die Dichtefunktion.

Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Multiplikation von Dichtefkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Mo 19.04.2010
Autor: gfm

Verstehe ich Dich richtig:

Gegeben sind für zwei Zufallsvariablen [mm] X_i [/mm] (i=1,2) deren Dichten [mm] f_{X_i}(s) [/mm] sowie eine Linearkombination [mm] Z=aX_1+bX_2 [/mm] und Dich interessiert die Dichte von Z?

LG

gfm






Bezug
                
Bezug
Multiplikation von Dichtefkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:29 Mo 19.04.2010
Autor: minus2000

Hi,
ja, aber dabei soll es sich nicht nur um eine einfache Linearkombination handeln, sondern auch um nicht lineare Verknüpfungen.

[mm] Z=aX^2 [/mm] + bY

Und dann hätte ich gerne die Dichtefunktion von Z. Ist es sozusagen möglich dies über die Dichgefunktionen von X und Y zu erhalten...

Bezug
                        
Bezug
Multiplikation von Dichtefkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:54 Di 20.04.2010
Autor: gfm

[mm] aX^2+bY=aU+bY [/mm] mit [mm] U=X^2. [/mm] Also im Prinzip eine Linearkombination, da die Dichte von U aus der von X ohne weiteres bestimmt werden kann.

Frage: Welche gemeinsame Verteilung haben Deine Zufallsvariablen? Denn

mit Z:=aX+bY ist

[mm] F_Z(t)=\integral_{\Omega} 1_{(-\infty,t]}(Z)dP=\integral_{Z(\Omega)} 1_{(-\infty,t]}(au+bv))dF_{(X,Y)}(u,v) [/mm]

und hier kommt man ohne die Struktur von [mm] F_{X,Y}(u,v) [/mm] nicht weiter.

LG

gfm

Bezug
                                
Bezug
Multiplikation von Dichtefkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:47 Di 20.04.2010
Autor: minus2000

Und wäre es möglich auch eine nichtlineare Transformation durchzuführen.
Das heißt ich hätte eine Dichtefunktion der Masse und eben der Geschwindigkeit und möchte eine Dichtefunktion der kinetischen Energie bestimmen?

Sprich: Dichte Ekin = 1/2* f(m) * [mm] f(v)^2 [/mm]

Bezug
                                        
Bezug
Multiplikation von Dichtefkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:18 Di 20.04.2010
Autor: gfm


> Und wäre es möglich auch eine nichtlineare Transformation
> durchzuführen.
>  Das heißt ich hätte eine Dichtefunktion der Masse und
> eben der Geschwindigkeit und möchte eine Dichtefunktion
> der kinetischen Energie bestimmen?
>  
> Sprich: Dichte Ekin = 1/2* f(m) * [mm]f(v)^2[/mm]

Du meinst sicher:

[mm] E=\frac{1}{2}MV^2 [/mm]

mit zwei Zufallsvariablen M und V und deren gemeinsame Dichte

[mm] f_{(M,V)}(m,v)=f_{M,V}(m|v)f_V(v) [/mm]

ist.

[mm] f_{M,V}(m|v) [/mm] ist die Dichte von M an der Stelle m unter der Voraussetzung, dass V den Wert v hat.

Gemeinsame Dichte deswegen, weil  z.B. in diesem Kontext die Massenverteilung durchaus einen Einfluß auf die Geschwindigkeitsverteilung haben könnte.

Erst wenn der Wert von V keinen Einfluss auf die Wahrscheinlichkeit von M, darf man annehmen, dass

[mm] f_{(M,V)}(m,v)=f_{M}(m)f_{V}(v) [/mm]

Wenn die gemeinsame Verteilung zweier reellwertiger Zufallsvariablen X,Y

[mm] F_{(X,Y)}(u,v):=P(\{X\le u\}\cap\{Y\le v\}) [/mm] ist und Z aus X,Y durch eine geeignete reellwertige Funktion  g

Z:=g(X,Y)

aus beiden hervorgeht, ist die Verteilung von Z gegeben durch

[mm] F_Z(w):=P(\{Z\le w\})=\integral_{\IR^2} 1_{(-\infty,w]}(g(u,v))dF_{(X,Y)}(u,v) [/mm]

[mm] =\integral_{\IR^2} 1_{(-\infty,w]}(g(u,v))dF_{(X,Y)}(u,v)=\integral_{\{(x,y):g(x,y)\le w\}}dF_{(X,Y)}(u,v) [/mm]

und wenn die Verteilung [mm] F_{(X,Y)} [/mm] eine Dichte hat:

[mm] =\integral_{\{(x,y):g(x,y)\le w\}}f_{(X,Y)}(u,v)dudv [/mm]

Nun hängt es von g und [mm] f_{(X,Y)} [/mm] ab wie man weiter machen kann.

Wenn man schließlich [mm] F_Z(w) [/mm] bestimmt hat, ist [mm] F_Z' [/mm] die Dichte.

Wenn dieser Weg zu schwierig ist, kann man auch versuchen, den Weg über die charakteristische Funktion [mm] E(e^{itZ}) [/mm] zu gehen, insbesondere, wenn man nur an Momenten interessiert ist.

LG

gfm










Bezug
                                
Bezug
Multiplikation von Dichtefkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Do 22.04.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]