matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenMultiplikation Matrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Abbildungen und Matrizen" - Multiplikation Matrizen
Multiplikation Matrizen < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multiplikation Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Di 09.09.2008
Autor: espritgirl

Hallo Zusammen [winken],


Ich habe eine Frage zur folgenden Multiplikation:

[mm] 2*\pmat{ 2 & 3 \\ 4 & 1 } [/mm] = [mm] \pmat{ 2*2 + & 3*2 \\ 2*4 + & 2*1 } [/mm]
[mm] =\pmat{ 4 & + 6 \\ 8 + & 2 } [/mm]

= [mm] \pmat{ 10 \\ 10} [/mm]

Meine Fragen sind:

Wieso addiere ich plötzlich die Matrizen?

Und kann ich die dann am Ende zusammenfassen, wie bei [mm] \pmat{ 10 \\ 10}? [/mm]



Liebe Grüße,

Sarah :-)

        
Bezug
Multiplikation Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Di 09.09.2008
Autor: schachuzipus

Hallo Sarah,

das ist keine Matrizenmultiplikation, sondern Multiplikation einer Matrix mit einem Skalar (einer reellen Zahl)

Wenn du die reelle Zahl 2 als [mm] $1\times [/mm] 1$-Matrix auffasst, so ist doch die (Matrizen-)Multiplikation mit einer [mm] $2\times [/mm] 2$-Matrix gar nicht definiert.

Die Spaltenzahl der ersten Matrix muss doch mit der Zeilenzahl der zweiten Matrix übereinstimmen!

> Hallo Zusammen [winken],
>  
>
> Ich habe eine Frage zur folgenden Multiplikation:
>  
> [mm]2*\pmat{ 2 & 3 \\ 4 & 1 }[/mm] = [mm]\pmat{ 2*2 + & 3*2 \\ 2*4 + & 2*1 }[/mm] [notok]

Wie kommen die "+" dahin?

Skalare kannst du elementweise "reinziehen", Multiplikation einer (reellen) Zahl mit ner Matrix geht also komponentenweise, das Format der Matrix bleibt erhalten


>  
> [mm]=\pmat{ 4 & + 6 \\ 8 + & 2 }[/mm]  [notok]

Es ergibt sich zwingend eine [mm] $2\times [/mm] 2$-Matrix [mm] $\pmat{4&6\\8&2}$ [/mm]

>  
> = [mm]\pmat{ 10 \\ 10}[/mm] [notok]

Das ist Mumpitz, du machst aus einer [mm] $2\times [/mm] 2$-Matrix eine [mm] $2\times [/mm] 1$-Matrix, das geht nicht!

>  
> Meine Fragen sind:
>  
> Wieso addiere ich plötzlich die Matrizen?

Keine Ahnung, wer macht denn sowas?

Es ist definitiv falsch!

>  
> Und kann ich die dann am Ende zusammenfassen, wie bei
> [mm]\pmat{ 10 \\ 10}?[/mm]

Nein, auf keinen Fall!!

>  
>
>
> Liebe Grüße,
>  
> Sarah :-)


LG

schachuzipus

Bezug
                
Bezug
Multiplikation Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:59 Di 09.09.2008
Autor: espritgirl

Hallo schachuzipus [winken],


Deine Antwort überrascht mich...

> Keine Ahnung, wer macht denn sowas?

Mein Mathelehrer [verwirrt]. Das stand definitiv so an der Tafel und er hat das definitiv so erklärt.


Danke für deine Antwort!



Liebe Grüße,

Sarah :-)

Bezug
        
Bezug
Multiplikation Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Di 09.09.2008
Autor: Nicodemus

Hallo Sarah,

statt die Matrix A mit sich selber zu addieren ( A+ A). kannst Du natürlich die Matrix auch mal 2 nehmen (2A); d.h. vordoppeln. Das Ergebnis ist wieder eine Matrix, also kannst Du die Elemente der Matrix nicht zusammen addieren!

ok?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]