matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesMultilinearformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Multilinearformen
Multilinearformen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multilinearformen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:35 So 19.06.2011
Autor: PeterWillyson

Aufgabe
Sei V ein endlichdimensionaler [mm] \IR-Vektorraum, [/mm] q [mm] \in \IN, \phi [/mm] eine q-fach alternierende Multilinearform auf V, [mm] \phi \not= [/mm] 0.
Definiere [mm] M(\phi) [/mm] = [mm] \{\eta \in V^\ast : \eta \wedge \phi = 0\}. [/mm]
Zeigen Sie:
Ist [mm] \phi [/mm] = [mm] f_1 \wedge [/mm] ... [mm] \wedge f_q, [/mm] so sind [mm] f_1,...,f_q [/mm] linear unabhängig.
Im allgemeinen ist dim [mm] M(\phi) \le [/mm] q und [mm] M(\phi) [/mm] = q gilt genau dann, wenn [mm] \phi [/mm] zerlegbar ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Den ersten Teil hab ich erledigt, ebenso, dass dim [mm] M(\phi) [/mm] = q gilt, wenn [mm] \phi [/mm] zerlegbar ist.
Wie zeige ich, dass aus dim [mm] M(\phi) [/mm] = q schon folgt, dass [mm] \phi [/mm] zerlegbar ist? Dachte daran, dass es dann l.u. [mm] \eta_1,...,\eta_q [/mm] gibt mit [mm] \phi \wedge \eta_i [/mm] = 0 und man dann vermutlich irgendwie zeigen kann, dass [mm] \phi [/mm] sich als Dachprodukt von Vielfachen der [mm] \eta_i [/mm] darstellen lässt. Weiss nur leider nicht wie ich das zeigen soll. Stimmt diese Vermutung überhaupt?
Dafür, dass allgemein dim [mm] M(\phi) \le [/mm] q gilt, hab ich leider im Moment gar keinen Ansatz.
Wär für jeden Ansatz dankbar!

        
Bezug
Multilinearformen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 22.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]