Monotonieverhalten + Parameter < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:06 So 08.02.2009 | Autor: | Zirbe |
Aufgabe | Bestimmen Sie das Monotonieverhalten der Aufgabe:
f(x)= [mm] \bruch{1}{12}x^{3}-\bruch{k}{3}x^{2}+kx
[/mm]
[mm] k\in \IR [/mm] ohne 0 |
Also ich habe das jetzt so gemacht, bin mir aber total unsicher, obs stimmt:
f´(x) = [mm] \bruch{1}{4}x^{2}-\bruch{2}{3}kx+k
[/mm]
Das Ganze gleich Null gesetzt und dann die Diskriminante mit
D= [mm] \bruch{4}{9}k^{2}-k [/mm] gebildet.
[mm] k(\bruch{4}{9}k-1)
[/mm]
[mm] k_{1}=0, k_{2}= \bruch{9}{4}
[/mm]
Fallunterscheidung:
Für D < 0 keine Lösung
f´> 0 für [mm] k\in \IR [/mm] ohne 0
Gf streng monoton steigend für [mm] k\in \IR [/mm] ohne 0
Für D = 0 1 Lösung
[mm] x_{1/2} [/mm] = 0 (doppelte NST mit VZW)
f´ [mm] \ge [/mm] 0 für [mm] k\in \IR [/mm] ohne 0
Gf streng monoton steigend für [mm] k\in \IR [/mm] ohne 0
Für D > 0 2 Lösungen
einfache NST mit VZW
für [mm] x\le0 [/mm] = streng monoton steigend
für 0 [mm] \le [/mm] x [mm] \le \bruch{9}{4} [/mm] = streng monoton fallend
für [mm] x\ge \bruch{9}{4} [/mm] = streng monoton steigend
Ist das richtig?
Danke schon mal für Antworten :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:47 So 08.02.2009 | Autor: | leduart |
Hallo
erstmal gehst du richtig vor. f' bilden und Diskr. ansehen.
wenn D<0 heisst das doch f' hat keine Nullstelle, also ist die fkt ueberall monoton. du kannst also f' an ner beliebigen Stelle ausrechnen und kennst das Vorzeichen.
Bei D= 0 wechselt hast du genau eine Stelle ,wo f'=0 sonst ueberall dasselbe Vorzeichen.
also auch fur alle x monoton.
D>0 du hast 2 Nullstellen.
aber jetzt hast du die Werte von k, fuer die die fkt nicht ueberall monoton ist. dann musst du erst suchen fuer welche x sie steigend, fuer welche x sie fallend ist.
Du springst ploetzlich von k auf x.
k gibt dir nur die Auskunft ob die fkt ueberall monoton ist oder nicht.
dann musst du die entspr Stuecke fuer x finden.
Gruss leduart
|
|
|
|