matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenMonotonieverhalten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Monotonieverhalten
Monotonieverhalten < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonieverhalten: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:29 Sa 23.04.2011
Autor: Roffel

Aufgabe
Zeigen Sie, dass die Funktion
f(x)= [mm] x*ln(1+\bruch{2}{x}) [/mm]   für x > 0
Streng monoton wachsend ist.

Hi
Also normal würde ich das mit f'(x) > 0 machen...
da kommt dann bei mir raus

f'(x)= [mm] ln(1+\bruch{2}{x}) [/mm] - [mm] \bruch{2}{x+2} [/mm]
und jetzt muss ich ja irgendwie zeigen das f'(x) größer 0 ist, wenn x>0
wie mach ich das denn?
ich hät jetzt gesagt:
[mm] \limes_{x\rightarrow\infty} f'(x)=ln(1+\bruch{2}{x}) [/mm] - [mm] \bruch{2}{x+2}=0 [/mm]
also jetzt weiß man ja das f'(x) sich 0 annähert.. aber das sagt mir ja nicht unbedingt das f(x) streng monoton wachsend ist oder etwa doch???

in ein anderen Lösung berechnen die noch f''(x)
da würde dann hier bei mir
f''(x)= [mm] \bruch{-4}{(x+2)^2*x} [/mm] rauskommen
und da sieht man dann das für x>0 f''(x) kleiner 0 immer ist. ok. und wenn f''(x) < 0 ist dann muss ja f'(x) streng monoton fallend sein... aber ich versteh noch nicht den Zusammenhang, dass wenn man weiß das f'(x) streng monoton fallend ist , das dann automatisch f(x) streng monton wachsend sein soll...kann mir das jemand erklären ? und kann man oder muss man es dann immer noch mit der 2ten ableitung machen, weil eigentlich muss dann ja nur zeigen dachte ich das f'(x) > 0 ist.. oder kann man das hier bei dieser aufgabe halt nicht zeigen.. häää :)

Danke

Gruß


        
Bezug
Monotonieverhalten: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Sa 23.04.2011
Autor: kamaleonti

Moin,
> Zeigen Sie, dass die Funktion
> f(x)= [mm]x*ln(1+\bruch{2}{x})[/mm]   für x > 0
>  Streng monoton wachsend ist.
>  Hi
>  Also normal würde ich das mit f'(x) > 0 machen...

>  da kommt dann bei mir raus
>  
> f'(x)= [mm]ln(1+\bruch{2}{x})[/mm] - [mm]\bruch{2}{x+2}[/mm]
> und jetzt muss ich ja irgendwie zeigen das f'(x) größer 0
> ist, wenn x>0
>  wie mach ich das denn?
>  ich hät jetzt gesagt:
> [mm]\limes_{x\rightarrow\infty} f'(x)=\red{\lim_{x\to\infty}}ln(1+\bruch{2}{x})[/mm] -
> [mm]\bruch{2}{x+2}=0[/mm]
>  also jetzt weiß man ja das f'(x) sich 0 annähert.. aber
> das sagt mir ja nicht unbedingt das f(x) streng monoton
> wachsend ist oder etwa doch???
>  
> in ein anderen Lösung berechnen die noch f''(x)
>  da würde dann hier bei mir
>  f''(x)= [mm]\bruch{-4}{(x+2)^2*x}[/mm] rauskommen
>  und da sieht man dann das für x>0 f''(x) kleiner 0 immer
> ist. ok. und wenn f''(x) < 0 ist dann muss ja f'(x) streng
> monoton fallend sein...

Da ist die Situation doch ganz gut! ;-)
f'(x) ist streng monoton fallend und [mm] \lim_{x\to\infty}f'(x)=0. [/mm]
Daraus folgt ganz leicht f'(x)>0.
Sei andernfalls [mm] x_0>0 [/mm] mit [mm] f'(x_0)\leq0. [/mm] Dann gibt es [mm] x_1>x_0 [/mm] mit [mm] f'(x)\leq f'(x_1)<0 [/mm] für alle [mm] x\geq x_1 [/mm] wegen f' streng monoton fallend. Widerspruch zu [mm] \lim_{x\to\infty}f'(x)=0 [/mm]

> aber ich versteh noch nicht den
> Zusammenhang, dass wenn man weiß das f'(x) streng monoton
> fallend ist , das dann automatisch f(x) streng monton
> wachsend sein soll...kann mir das jemand erklären ? und
> kann man oder muss man es dann immer noch mit der 2ten
> ableitung machen, weil eigentlich muss dann ja nur zeigen
> dachte ich das f'(x) > 0 ist.. oder kann man das hier bei
> dieser aufgabe halt nicht zeigen.. häää :)
>  
> Danke
>  
> Gruß
>    

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]