matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenMonotonie von alternierenden R
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Monotonie von alternierenden R
Monotonie von alternierenden R < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie von alternierenden R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Do 19.11.2015
Autor: sae0693

Aufgabe
Man begründe mit Hilfe des Leibniz-Kriteriums die Konvergenz der Reihe

[mm] \sum{ k=1 }{ \infty }{ \frac{ (-1)^{ k+1 } }{ \sqrt{ k } } } [/mm]


Dazu muss ja der Grenzwert gleich 0 sein und die Reihe monoton fallend sein.

[mm] \limes_{k\rightarrow\infty}[/mm]  [mm] \frac{ (-1)^{ k+1 } }{ \sqrt{ k } } } [/mm] = 0

Nur, wie mache ich dann mit der Monotonie weiter? Vorallem wegen dem Vorzeichenwechsel?

        
Bezug
Monotonie von alternierenden R: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Do 19.11.2015
Autor: fred97


> Man begründe mit Hilfe des Leibniz-Kriteriums die
> Konvergenz der Reihe
>
> [mm]\sum{ k=1 }{ \infty }{ \frac{ (-1)^{ k+1 } }{ \sqrt{ k } } }[/mm]
>  
> Dazu muss ja der Grenzwert gleich 0 sein und die Reihe
> monoton fallend sein.
>
> [mm]\limes_{k\rightarrow\infty}[/mm]  [mm]\frac{ (-1)^{ k+1 } }{ \sqrt{ k } } }[/mm]
> = 0
>  
> Nur, wie mache ich dann mit der Monotonie weiter? Vorallem
> wegen dem Vorzeichenwechsel?


Offenbar hast Du das Leibnizkriterium nicht verstanden.

Du musst nur zeigen, dass die Folge [mm] (\bruch{1}{\wurzel{k}}) [/mm] eine monoton fallende Nullfolge ist.

FRED

Bezug
                
Bezug
Monotonie von alternierenden R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Do 19.11.2015
Autor: sae0693

Habs raus, hatte das zuvor falsch verstanden. Danke!

Nun geht die Aufgabe weiter:

Wie groß ist der Unterschied zwischen dem Summenwert dieser Reihe und dem Wert der zugehöhrigen Partialsumme maximal, wenn man die ersten 99 Summanden berücksichtigt?

Wie setze ich hier an?

Bezug
                        
Bezug
Monotonie von alternierenden R: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Do 19.11.2015
Autor: leduart

Hallo
siehe  
https://de.wikipedia.org/wiki/Leibniz-Kriterium
Gruß ledum

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]