matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenMonotonie nachweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Monotonie nachweisen
Monotonie nachweisen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 So 10.04.2016
Autor: pc_doctor

Aufgabe
Sei f: ]0, [mm] \infty[ [/mm] -> [mm] \IR [/mm] definiert durch

f(x) = (1+ [mm] \bruch{1}{x})^{x} [/mm] für alle x>0

Zeigen Sie, dass f streng monoton wachsend ist.

Hinweis: Betrachten Sie die Funktion g = log [mm] \circ [/mm] f und ihre Ableitung.

Hallo,

die Ableitung von f zu bilden, fällt mir etwas schwer.

Deswegen wohl auch der Hinweis. Was hat es mit dem Hinweis auf sich? Meinen die g(x) = log(f(x)) ? Die Ableitung von g wäre ja dann [mm] \bruch{1}{f'(x)} [/mm] Inwiefern hilft mir das weiter ?  Stehe auf dem Schlauch.

Vielen Dank im Voraus.

        
Bezug
Monotonie nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 So 10.04.2016
Autor: abakus

Hallo,
ich hätte hier ein Logarithmengesetz verwendet:
ln(f(x))=x*(ln(1+1/x)

Bezug
        
Bezug
Monotonie nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 So 10.04.2016
Autor: fred97


> Sei f: ]0, [mm]\infty[[/mm] -> [mm]\IR[/mm] definiert durch
>  
> f(x) = (1+ [mm]\bruch{1}{x})^{x}[/mm] für alle x>0
>  
> Zeigen Sie, dass f streng monoton wachsend ist.
>  
> Hinweis: Betrachten Sie die Funktion g = log [mm]\circ[/mm] f und
> ihre Ableitung.
>  Hallo,
>  
> die Ableitung von f zu bilden, fällt mir etwas schwer.
>  
> Deswegen wohl auch der Hinweis. Was hat es mit dem Hinweis
> auf sich? Meinen die g(x) = log(f(x)) ? Die Ableitung von g
> wäre ja dann [mm]\bruch{1}{f'(x)}[/mm]

Nein, das ist falsch. schau dir die Kettenregel nochmal an.

fred




Inwiefern hilft mir das

> weiter ?  Stehe auf dem Schlauch.
>  
> Vielen Dank im Voraus.  


Bezug
                
Bezug
Monotonie nachweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 So 10.04.2016
Autor: pc_doctor

Hallo,

ich habe das Problem gelöst, vielen Dank für die Antworten. Mit der Kettenregel hat es funktioniert.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]