matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenMonotonie einer Lösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Monotonie einer Lösung
Monotonie einer Lösung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie einer Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Mi 25.11.2015
Autor: mathenoob3000

Aufgabe
Sei $f: [mm] \mathbb{R} \rightarrow \mathbb{R}$ [/mm] stetig diffbar. Zeige dass für jede Lösung $x: I [mm] \rightarrow \mathbb{R}$ [/mm] der DGL $x' = f(x)$ genau eine der folg. Aussagen gilt:
1) $x$ ist streng monoton steigend
2) $x$ ist konstant
3) $x$ ist streng monoton fallend


Hallo,

Sei [mm] x(t_0) [/mm] = [mm] x_0 [/mm] ein Anfwangswert der DGL

Angenommen $x$ ist nicht streng monton, dann existiert ein [mm] $\tau \in [/mm] I$ sodass [mm] $x'(\tau) [/mm] = 0$, also [mm] $x'(\tau) [/mm] = [mm] f(x(\tau)) [/mm] = 0 [mm] \Rightarrow [/mm] x: t [mm] \mapsto x_0$ [/mm] ist Lösung der DGL.
Da aber $f$ stetig diffbar, also lokal L-stetig, muss die Lösung eindeutig sein. Also hat man einen Widerspruch.

Geht das so?


lgg


        
Bezug
Monotonie einer Lösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Mi 25.11.2015
Autor: mathenoob3000

Sorry hier stimmt was nicht ich werde meinen ersten Post nochmal überarbeiten müssen

Bezug
        
Bezug
Monotonie einer Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Fr 27.11.2015
Autor: Jule2

Also als kleiner Tipp nimm doch einmal an es wäre nicht so es gibt also es gäbe eine nicht monotone Lösung auf einem Intervall so das gilt für a,b aus diesem Intervall ist x'(a)>0 und x'(b)<0.
X hat auf dem kompakten Intervall [a,b] als stetige Funktion ein Maximum....

so und jetzt du weiter  mit Zwischenwertsatz gilt dann was??

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]