matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenMonotonie
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Monotonie
Monotonie < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 So 06.01.2008
Autor: MeAndMrJones

Aufgabe
Sei [mm] f:\IR\to\IR, [/mm]  x [mm] \mapsto a^x, [/mm] a [mm] \in \IR_{+}, [/mm] a [mm] \not= [/mm] 1. Zeigen Sie:

Für a > 1 ist f streng monoton wachsend; für 0<a<1 ist f streng monoton fallend.

Schönen guten Abend, allerseits!!

Den ersten Teil habe ich hinbekommen mit dem streng monoton wachsend. Aber beim zweiten Teil hänge ich schon seit ner Weile. Ein kleiner Tipp würde sogar reichen, hoffe ich =)

Vielen Dank im Voraus!

        
Bezug
Monotonie: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 So 06.01.2008
Autor: Marcel

Hallo,

die Funktion $x [mm] \mapsto a^x$ [/mm] mit $0 < a$ und $a [mm] \not= [/mm] 1$ ist ja nichts anderes als $x [mm] \mapsto exp(x*ln(a))=e^{x*ln(a)}$ [/mm]
(Ist Dir das klar bzw. bekannt?)
Die Funktion exp(.) (also $x [mm] \mapsto e^x$) [/mm] ist streng monoton wachsend auf [mm] $\IR$. [/mm] Für $a > 1$ ist $ln(a) > 0$, für $0<a<1$ ist $ln(a) < 0$, und mit diesen Sachverhalten kann man die Behauptungen folgern.
Betrachten wir den Fall $a > 1$:
Dort ist also $ln(a) > 0$:
Ist $x < y$ und $ln(a) > 0$:
In welcher Beziehung (<,>, [mm] $\le$ [/mm] oder [mm] $\ge$?) [/mm] stehen dann $x*ln(a)$ und $y*ln(a)$ zueinander?


Betrachten wir nun den Fall $0 < a <1$:
Hier ist $ln(a) < 0$. Ist nun $x < y$:
In welcher Beziehung stehen dann hier $x*ln(a)$ und $y*ln(a)$ zueinander?

Im Prinzip bist Du, wenn Du das richtige Symbol oben jeweils einsetzt, schon fertig, wenn Du beachtest, dass - wie gesagt - exp(.) streng monoton wachsend auf [mm] $\IR$ [/mm] ist.

Gruß,
Marcel

Bezug
                
Bezug
Monotonie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:55 So 06.01.2008
Autor: MeAndMrJones

Erstmals, vielen Dank für die schnelle Antwort!!

Okay, jetzt hab ich da stehen...

2. Fall: für 0<a<1 gilt ln(a)<0

=> für x<y gilt dann x*ln(a)>y*ln(a) also [mm] a^x [/mm] > [mm] a^y [/mm]

dann folgt auch die behauptung.
Danke schön!!

Bezug
                        
Bezug
Monotonie: richtig!
Status: (Antwort) fertig Status 
Datum: 23:03 So 06.01.2008
Autor: Loddar

Hallo MeAndMrJones!


[ok] Richtig so! Alternativ hätte man das auch über die 1. Ableitung zeigen können.


Gruß
Loddar


Bezug
                        
Bezug
Monotonie: Antwort
Status: (Antwort) fertig Status 
Datum: 23:29 So 06.01.2008
Autor: Marcel

Hallo,

ja, absolut korrekt, aber bei so kleinen Aufgaben sollte man dann ganz ausführlich sein, und ruhig alles hinschreiben, sonst sieht es ein wenig so aus, als hätte man nur etwas zusammengebastelt, ohne sich wirklich Gedanken zu machen (Du musst bedenken, dass Dein Korrektor, wenn Du nirgends auch nur die von mir erwähnten Sachverhalte erwähnst, ja im Prinzip nicht wissen kann, wie Du das folgerst; und dann sieht es so aus, als wenn Du das so folgern würdest, weil die Aufgabe es so verlangt):
Ist $x<y$, so folgt im Falle $0<a<1$ dann wegen $ln(a)<0$, dass
$y*ln(a) < x*ln(a)$. Weil exp(.) auf [mm] $\IR$ [/mm] bekanntlich streng monoton wachsend ist (ich gehe auch einfach mal davon aus, dass das bekannt ist) folgt dann
$exp(y*ln(a)) < exp(x*ln(a))$, also in der Tat [mm] $a^y [/mm] < [mm] a^x$ [/mm] bzw. [mm] $a^x [/mm] > [mm] a^y$. [/mm]

Gruß,
Marcel

Bezug
                                
Bezug
Monotonie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:11 Mo 07.01.2008
Autor: MeAndMrJones

Loddar, danke für den Tipp, aber Ableitungen durfte ich nicht anwenden, weil wir sie noch nich hatten =)

Marcel, danke!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]