matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMonoton steigende Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Monoton steigende Folgen
Monoton steigende Folgen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monoton steigende Folgen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:03 Sa 06.11.2004
Autor: chalily

Also, es geht um folgende Aufgabe:

Sei (M,<) eine geordnete Menge und  [mm] (a_{n}) [/mm] eine Folge in M.
Zeigen Sie: [mm] (a_{n}) [/mm] ist monoton steigend genau dann, wenn  [mm] \forall [/mm] n  [mm] \in \IN, a_{n} \le a_{n+1} [/mm]
(Hinweis: vollständige Induktion).

Mein Problem ist nun, dass ich keine Ahnung habe, was ich da überhaupt zeigen soll. Ich habe in mehreren Büchern und auch im Internet gesucht und finde das immer als Definition für monoton steigende Folgen. Oder habe ich da was falsch verstanden?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Monoton steigende Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 So 07.11.2004
Autor: Marc

Hallo chalily,

[willkommenmr]

> Sei (M,<) eine geordnete Menge und  [mm](a_{n})[/mm] eine Folge in
> M.
>  Zeigen Sie: [mm](a_{n})[/mm] ist monoton steigend genau dann, wenn  
> [mm]\forall[/mm] n  [mm]\in \IN, a_{n} \le a_{n+1} [/mm]
>  (Hinweis:
> vollständige Induktion).
>  
> Mein Problem ist nun, dass ich keine Ahnung habe, was ich
> da überhaupt zeigen soll. Ich habe in mehreren Büchern und
> auch im Internet gesucht und finde das immer als Definition
> für monoton steigende Folgen. Oder habe ich da was falsch
> verstanden?

Viel interessanter ist doch die Frage: Wie habt Ihr die Monotonie von Folgen definiert?

Eine mögliche Definition wäre z.B.
[mm] $(a_n)_{n\in\IN}$ [/mm] monoton steigend [mm] $:\gdw$ $\forall\ n\in\IN$ [/mm] gilt: [mm] $a_n\le a_m$ [/mm] für alle [mm] $m\ge [/mm] n$.

Erst wenn Du uns Eure Definition nachlieferst, können wir die Frage beantworten.

Bis hoffentlich später,
Marc

Bezug
        
Bezug
Monoton steigende Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 Mo 08.11.2004
Autor: chalily

Eine Folge in (M,<) heißt monoton steigend, falls die Abbildung a: [mm] \IN \to [/mm] M monoton steigend ist.

Eine Funktion f heißt monoton steigend, wenn [mm] \forall [/mm] m<n  [mm] \Rightarrow [/mm] f(m) [mm] \le [/mm] f(n)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]