matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperMonoidringe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Monoidringe
Monoidringe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monoidringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 Sa 04.01.2014
Autor: UniversellesObjekt

Aufgabe
$A$ sei ein kommutativer Ring, $G$, $G'$ seien multiplikative Monoide und [mm] $\varphi\colon G\longrightarrow [/mm] G'$ sei ein Monoid-Homomorphismus. Dann existiert ein eindeutiger Ringhomomorphismus [mm] $h\colon A[G]\longrightarrow [/mm] A[G']$, sodass [mm] $h(x)=\varphi(x)$ [/mm] für alle [mm] $x\in [/mm] G$ und $h(a)=a$ für alle [mm] $a\in [/mm] A$. $A[G]$ bezeichnet hierbei den []Monoidring über $A$.

Hallo,

Es ist ja klar, dass [mm] $h\colon A[G]\longrightarrow [/mm] A[G']$ gegeben sein muss durch [mm] $\sum_x a_x x\longmapsto\sum_x a_x \varphi(x)$; [/mm] das reicht auch um $h$ zu definieren, da ich jedes Element in $A[G]$ eindeutig auf diese Weise schreiben kann. Dass $h$ ein Homomorphismus in Bezug auf die additive Struktur von $A[G]$ und $A[G']$ ist, ist auch klar.

Wenn ich mir Multiplikation angucke, wäre es ja schön, einfach zu schreiben:

[mm] $h((\sum_x a_x x)(\sum_y b_y y))=h(\sum_{x,y}a_xb_y xy)=\sum_{x,y}a_xb_y\varphi(xy)=\sum_{x,y}a_xb_y\varphi(x)\varphi(y)=(\sum_x a_x\varphi(x))(\sum_x b_y\varphi(y)=h(\sum_x a_x x)h(\sum_y b_y [/mm] y)$.
Aber weil ich $h$ ja nur für Summen der Form [mm] $\sum_x a_x [/mm] x$ definiert habe, ist das mit diesen Doppelindizes etwas unsauber, darum würde ich gerne

[mm] h(\sum_z(\sum_{xy=z}a_xb_y) z)=h(\sum_x a_x x)h(\sum_y b_y [/mm] y)$ da stehen haben, aber das kriege ich nicht sauber aufgeschrieben.

Kann jemand helfen?

Liebe Grüße,
UniversellesObjekt

        
Bezug
Monoidringe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:08 Sa 04.01.2014
Autor: felixf

Moin UniversellesObjekt,

> [mm]A[/mm] sei ein kommutativer Ring, [mm]G[/mm], [mm]G'[/mm] seien multiplikative
> Monoide und [mm]\varphi\colon G\longrightarrow G'[/mm] sei ein
> Monoid-Homomorphismus. Dann existiert ein eindeutiger
> Ringhomomorphismus [mm]h\colon A[G]\longrightarrow A[G'][/mm],
> sodass [mm]h(x)=\varphi(x)[/mm] für alle [mm]x\in G[/mm] und [mm]h(a)=a[/mm] für
> alle [mm]a\in A[/mm]. [mm]A[G][/mm] bezeichnet hierbei den
> []Monoidring über
> [mm]A[/mm].
>
>  Hallo,
>  
> Es ist ja klar, dass [mm]h\colon A[G]\longrightarrow A[G'][/mm]
> gegeben sein muss durch [mm]\sum_x a_x x\longmapsto\sum_x a_x \varphi(x)[/mm];
> das reicht auch um [mm]h[/mm] zu definieren, da ich jedes Element in
> [mm]A[G][/mm] eindeutig auf diese Weise schreiben kann. Dass [mm]h[/mm] ein
> Homomorphismus in Bezug auf die additive Struktur von [mm]A[G][/mm]
> und [mm]A[G'][/mm] ist, ist auch klar.

[ok]

> Wenn ich mir Multiplikation angucke, wäre es ja schön,
> einfach zu schreiben:
>  
> [mm]h((\sum_x a_x x)(\sum_y b_y y))=h(\sum_{x,y}a_xb_y xy)=\sum_{x,y}a_xb_y\varphi(xy)=\sum_{x,y}a_xb_y\varphi(x)\varphi(y)=(\sum_x a_x\varphi(x))(\sum_x b_y\varphi(y)=h(\sum_x a_x x)h(\sum_y b_y y)[/mm].
>  
> Aber weil ich [mm]h[/mm] ja nur für Summen der Form [mm]\sum_x a_x x[/mm]
> definiert habe, ist das mit diesen Doppelindizes etwas
> unsauber, darum würde ich gerne
>  
> [mm]h(\sum_z(\sum_{xy=z}a_xb_y) z)=h(\sum_x a_x x)h(\sum_y b_y[/mm]
> y)$ da stehen haben, aber das kriege ich nicht sauber
> aufgeschrieben.

Warum nicht? Bzw. was genau nicht?

Du musst ja zeigen:

(i) [mm] $(\sum_x a_x [/mm] x) [mm] (\sum_y b_y [/mm] y) = [mm] \sum_z (\sum_{xy=z} a_x b_y) [/mm] z$ (wobei die innere Summe endlich ist, da [mm] $(a_x, b_y) \neq [/mm] (0, 0)$ nur fuer endlich viele $(x, y)$ der Fall ist);

(ii) [mm] $\sum_z (\sum_{xy=z} a_x b_y) [/mm] h(z) = [mm] (\sum_x a_x [/mm] h(x)) [mm] (\sum_y b_y [/mm] h(y))$.

Damit haettest du die gesuchte Gleichheit. Oder ist deine Frage (im wesentlichen), wie man diese beiden Gleichheiten zeigt? (Teil (i) folgt ja aus (ii) fuer $h = [mm] id_G$.) [/mm]

LG Felix


Bezug
                
Bezug
Monoidringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 So 05.01.2014
Autor: UniversellesObjekt


> (i) [mm](\sum_x a_x x) (\sum_y b_y y) = \sum_z (\sum_{xy=z} a_x b_y) z[/mm]
> (wobei die innere Summe endlich ist, da [mm](a_x, b_y) \neq (0, 0)[/mm]
> nur fuer endlich viele [mm](x, y)[/mm] der Fall ist);
>  
> (ii) [mm]\sum_z (\sum_{xy=z} a_x b_y) h(z) = (\sum_x a_x h(x)) (\sum_y b_y h(y))[/mm].
>  
> Damit haettest du die gesuchte Gleichheit. Oder ist deine
> Frage (im wesentlichen), wie man diese beiden Gleichheiten
> zeigt? (Teil (i) folgt ja aus (ii) fuer [mm]h = id_G[/mm].)
>  
> LG Felix


Hi Felix,

Danke für deine Antwort. Ja, das zu zeigen habe ich nicht hinbekommen, wobei (i) aber meine Definition der Multiplikation ist; es geht also nur um (ii). Hier sollte es heißen [mm]\sum_z (\sum_{xy=z} a_x b_y) \varphi(z) = (\sum_x a_x \varphi(x)) (\sum_y b_y \varphi(y))[/mm], also [mm] $\varphi$ [/mm] anstelle von $h$, das war wohl ein Vertipper.

Ich habe das jetzt so gemacht, es wäre super, wenn du mal gucken könntest, ob das passt:

[mm] $h((\sum_{x\in G}a_x x)(\sum_{y\in G}b_y [/mm] y))$

[mm] $=h(\sum_{z\in G}(\sum_{xy=z}a_xb_y)z)$ [/mm]

[mm] $=\sum_{z'\in G'}(\sum_{\varphi(z)=z'}(\sum_{xy=z}a_xb_y))z'$ [/mm]

[mm] $=\sum_{z'\in G'}(\sum_{\varphi(x)\varphi(y)=z'}a_xb_y)z'$ [/mm]

[mm] $=\sum_{z'\in G}(\sum_{x'\cdot y'=z',\ \varphi(x)=x',\ \varphi(y)=y'}a_xb_y)z'$ [/mm]

[mm] $=\varphi{z'\in G'}(\sum_{x'y'=z'}(\sum_{\varphi(x)=x',\ \varphi(y)=y'}a_xb_y))z'$ [/mm]

[mm] $=\sum_{z'\in G'}(\sum_{x'y'=z'}((\sum_{\varphi(x)=x'}a_x)(\sum_{\varphi(y)=y'}b_y)))z'$ [/mm]

[mm] $=(\sum_{x'\in G'}(\sum_{\varphi(x)=x'}a_x)x')(\sum_{y'\in G'}(\sum_{\varphi(y)=y'}b_y)y')$ [/mm]

[mm] $=h(\sum_{x\in G}a_x x)h(\sum_{y\in G}b_y [/mm] y)$

Ich weiß, das sieht jetzt ziemlich hässlich aus, aber ich wäre echt dankbar, wenn du mir bescheid geben könntest, ob das so stimmt.

Liebe Grüße,
UniversellesObjekt

Bezug
                        
Bezug
Monoidringe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 So 05.01.2014
Autor: felixf

Moin universelles Objekt,

> > (i) [mm](\sum_x a_x x) (\sum_y b_y y) = \sum_z (\sum_{xy=z} a_x b_y) z[/mm]
> > (wobei die innere Summe endlich ist, da [mm](a_x, b_y) \neq (0, 0)[/mm]
> > nur fuer endlich viele [mm](x, y)[/mm] der Fall ist);
>  >  
> > (ii) [mm]\sum_z (\sum_{xy=z} a_x b_y) h(z) = (\sum_x a_x h(x)) (\sum_y b_y h(y))[/mm].
>  
> >  

> > Damit haettest du die gesuchte Gleichheit. Oder ist deine
> > Frage (im wesentlichen), wie man diese beiden Gleichheiten
> > zeigt? (Teil (i) folgt ja aus (ii) fuer [mm]h = id_G[/mm].)
>  
> Danke für deine Antwort. Ja, das zu zeigen habe ich nicht
> hinbekommen, wobei (i) aber meine Definition der
> Multiplikation ist;

stimmt :)

> es geht also nur um (ii). Hier sollte
> es heißen [mm]\sum_z (\sum_{xy=z} a_x b_y) \varphi(z) = (\sum_x a_x \varphi(x)) (\sum_y b_y \varphi(y))[/mm],
> also [mm]\varphi[/mm] anstelle von [mm]h[/mm], das war wohl ein Vertipper.

Ja, bzw. das gleiche, da ja $h(z) = [mm] \varphi(z)$ [/mm] ist fuer $z [mm] \in [/mm] G$.

> Ich habe das jetzt so gemacht, es wäre super, wenn du mal
> gucken könntest, ob das passt:
>  
> [mm]h((\sum_{x\in G}a_x x)(\sum_{y\in G}b_y y))[/mm]
>  
> [mm]=h(\sum_{z\in G}(\sum_{xy=z}a_xb_y)z)[/mm]
>  
> [mm]=\sum_{z'\in G'}(\sum_{\varphi(z)=z'}(\sum_{xy=z}a_xb_y))z'[/mm]
>  
> [mm]=\sum_{z'\in G'}(\sum_{\varphi(x)\varphi(y)=z'}a_xb_y)z'[/mm]

Hiervor wuerd ich noch den Zwischenschritt [mm] $\sum_{z'\in G'}(\sum_{\varphi(x y)=z'}a_xb_y)z'$ [/mm] einfuegen.

> [mm]=\sum_{z'\in G}(\sum_{x'\cdot y'=z',\ \varphi(x)=x',\ \varphi(y)=y'}a_xb_y)z'[/mm]
>  
> [mm]=\varphi{z'\in G'}(\sum_{x'y'=z'}(\sum_{\varphi(x)=x',\ \varphi(y)=y'}a_xb_y))z'[/mm]
>  
> [mm]=\sum_{z'\in G'}(\sum_{x'y'=z'}((\sum_{\varphi(x)=x'}a_x)(\sum_{\varphi(y)=y'}b_y)))z'[/mm]
>  
> [mm]=(\sum_{x'\in G'}(\sum_{\varphi(x)=x'}a_x)x')(\sum_{y'\in G'}(\sum_{\varphi(y)=y'}b_y)y')[/mm]
>  
> [mm]=h(\sum_{x\in G}a_x x)h(\sum_{y\in G}b_y y)[/mm]
>  
> Ich weiß, das sieht jetzt ziemlich hässlich aus, aber ich
> wäre echt dankbar, wenn du mir bescheid geben könntest,
> ob das so stimmt.

Ja, das stimmt so.

Aber vielleicht solltest du ganz am Anfang (dort wo du $h$ definierst) noch schreiben, dass [mm] $h(\sum_x a_x [/mm] x) = [mm] \sum_{x'} (\sum_{\varphi(x)=x'} a_x) [/mm] x'$ die "richtige" Definition von $h$ ist. (Falls du das nicht eh schon machst :) )

LG Felix


Bezug
                                
Bezug
Monoidringe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:52 So 05.01.2014
Autor: UniversellesObjekt

Supi, Danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]