matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenMono,Iso
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Mono,Iso
Mono,Iso < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mono,Iso: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Do 09.12.2010
Autor: Mandy_90

Aufgabe
Seien K ein Körper und V ein K-Vektorraum.Sei [mm] g_{v}:V \to V\*\*, [/mm] v [mm] \mapsto b_{v}(v) [/mm] die Abbildung mit [mm] b_{v}(v) \in V\*\*=Hom_{K}(V\*,K), b_{v}(v):f \mapsto [/mm] f(v) für alle v [mm] \in [/mm] V, f [mm] \in V\*.Man [/mm] zeige:

a) Die Abbildung [mm] b_{v} [/mm] ist ein Monomorphismus
b) Wenn [mm] dim_{K}V [/mm] < [mm] \infty, [/mm] dann ist [mm] b_{v} [/mm] ein Isomorphismus.

Hallo zusammen^^

Ich habe versucht diese Aufgabe zu lösen, bin aber an einigen Stellen nicht mehr weitergekommen und hoffe mir kann jemand helfen.

a) Ich muss also zeigen, dass [mm] b_{v} [/mm] eine lineare Abbildung ist und injektiv ist.

Bei der Injektivität hab ich mir gedacht, einfach zu zeigen, dass der Kern=0 ist, dann ist die Abbildung auch injektiv.
Also sei x [mm] \in Kern(b_{v}). [/mm] Dann ist [mm] b_{v}(x)=0. [/mm] So dann hab ich [mm] b_{v}(v):f \mapsto [/mm] f(v). Das heißt f müsste =0 sein. Aber irgendwie kann ich nicht genau begründen wieso jetzt x=0 sein muss.
Wäre lieb, wenn mir da jemand einen Tipp geben könnte.


b) Hier muss ich doch zeigen, dass wenn V endlichdimensional ist, dann ist [mm] b_{v} [/mm] linear, injektiv und surjektiv.

Ich habe hier leider überhaupt keinen Ansatz,wie ich anfangen kann.
Also Injektivität und Linearität hätte ich dann schon in a) gezeigt, bleibt noch die Surjektivität.Aber ich muss das ja mit der Endlichdimensionalität von V begründen. Ich wäre hier für jeden kleinen Ansatz dankbar.

lg

        
Bezug
Mono,Iso: Antwort
Status: (Antwort) fertig Status 
Datum: 06:19 Fr 10.12.2010
Autor: angela.h.b.


> Seien K ein Körper und V ein K-Vektorraum.Sei [mm]g_{v}:V \to V\*\*,[/mm]
> v [mm]\mapsto b_{v}(v)[/mm] die Abbildung mit [mm]b_{v}(v) \in V\*\*=Hom_{K}(V\*,K), b_{v}(v):f \mapsto[/mm]
> f(v) für alle v [mm]\in[/mm] V, f [mm]\in V\*.Man[/mm] zeige:
>  
> a) Die Abbildung [mm]b_{v}[/mm] ist ein Monomorphismus
>  b) Wenn [mm]dim_{K}V[/mm] < [mm]\infty,[/mm] dann ist [mm]b_{v}[/mm] ein
> Isomorphismus.
>  Hallo zusammen^^
>  
> Ich habe versucht diese Aufgabe zu lösen, bin aber an
> einigen Stellen nicht mehr weitergekommen und hoffe mir
> kann jemand helfen.

Hallo,

die Lösung der Aufgabe käme sicher besser voran, wenn der Aufgabentext fehlerfrei und bequem zu lesen wäre. Nachdem Du über 1900 Posts hier geschrieben hast, sollte doch sowas wie [mm]V^{\*\*}[/mm]  kein Problem darstellen.

Mit [mm] g_v [/mm] meinst Du  [mm] b_v? [/mm]
Und das kleine v im Index? Was soll das sein?

Heißt die Aufgabenstellung vielleicht ungefähr so:

Aufgabe
Seien K ein Körper und V ein K-Vektorraum.

Sei
[mm]b:V \to V^{\*\*}[/mm] mit
v [mm]\mapsto b(v)[/mm] ,

wobei

b(v) [mm] \in V^{\*\*}=Hom_{K}(V\*,K) [/mm] mit
f [mm] \mapsto [/mm] f(v) für alle v [mm] \in [/mm] V, f [mm] \in V{\*}. [/mm]





>  
> a) Ich muss also zeigen, dass b eine lineare Abbildung
> ist und injektiv ist.
>  
> Bei der Injektivität hab ich mir gedacht, einfach zu
> zeigen, dass der Kern=0 ist, dann ist die Abbildung auch
> injektiv.

Ja.

>  Also sei x [mm]\in Kern(b).[/mm] Dann ist [mm]b(x)=0.[/mm]

Ja.

> So dann
> hab ich [mm]b(v):f \mapsto[/mm] f(v).

>Das heißt f müsste =0

> sein.

Wieso?

Du sagst: [mm] b(x)=0_{V^{\*\*}}. [/mm]

Was bedeutet denn das? Es bedeutet:

Für alle [mm] f\in V^{\*} [/mm] ist [mm] [b(x)](f)=0_K, [/mm] also [mm] f(x)=0_k. [/mm]

Und jetzt mußt Du einen Grund dafür finden, daß das x der Nullvektor sein muß.

EDIT:

Nehmen wir an, daß [mm] x\not=0. [/mm]

Dann kann man x zu einer Basis B von V ergänzen.

Dazu kannst Du Dir nun überlegen, daß die lineare Abbildung

[mm] g_x: V\to [/mm] K
mit

[mm]g_{x}(v):=\begin{cases} 0, & \mbox{fuer }v\in B \setminus \{0\}\\ 1, & \mbox{fuer } v=x \end{cases}[/mm]

ein Element von [mm] V^{\*} [/mm] ist...


Gruß v. Angela


Bezug
                
Bezug
Mono,Iso: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:36 So 12.12.2010
Autor: Mandy_90


> Heißt die Aufgabenstellung vielleicht ungefähr so:
>  
> Seien K ein Körper und V ein K-Vektorraum.
>  
> Sei
> [mm]b:V \to V^{\*\*}[/mm] mit
>  v [mm]\mapsto b(v)[/mm] ,
>  
> wobei
>
> b(v) [mm]\in V^{\*\*}=Hom_{K}(V\*,K)[/mm] mit
> f [mm]\mapsto[/mm] f(v) für alle v [mm]\in[/mm] V, f [mm]\in V{\*}.[/mm]

Ja,so ist die Aufgabenstellung.

>
> >  

> > a) Ich muss also zeigen, dass b eine lineare Abbildung
> > ist und injektiv ist.
>  >  
> > Bei der Injektivität hab ich mir gedacht, einfach zu
> > zeigen, dass der Kern=0 ist, dann ist die Abbildung auch
> > injektiv.
>  
> Ja.
>  
> >  Also sei x [mm]\in Kern(b).[/mm] Dann ist [mm]b(x)=0.[/mm]

>
> Ja.
>  
> > So dann
> > hab ich [mm]b(v):f \mapsto[/mm] f(v).
> >Das heißt f müsste =0
> > sein.
>
> Wieso?
>  
> Du sagst: [mm]b(x)=0_{V^{\*\*}}.[/mm]
>  
> Was bedeutet denn das? Es bedeutet:
>  
> Für alle [mm]f\in V^{\*}[/mm] ist [mm][b(x)](f)=0_K,[/mm] also [mm]f(x)=0_k.[/mm]
>  
> Und jetzt mußt Du einen Grund dafür finden, daß das x
> der Nullvektor sein muß.
>  
> Dazu kannst Du Dir überlegen, daß die Abbildung
>
> [mm]g_x: V\to[/mm] K
>  mit
>
> [mm]g_{x}(v):=\begin{cases} 0, & \mbox{fuer }v\not=x \\ 1, & \mbox{fuer } v=x \end{cases}[/mm]
>  
> ein Element von [mm]V^{\*}[/mm] ist...
>  

Ok,also ich weiß,dass b(v)=0 sein muss und es ist [mm]g_x: V\to[/mm] K ein Element von [mm] V^{\*}. [/mm] Da f auch ein Element von [mm] V^{\*} [/mm] ist, ist doch f:V [mm] \to [/mm] K. Jetzt muss f(x)=0 sein und es ist [mm] g_{x}(v)=0 [/mm] für v [mm] \not=x. [/mm]
In unserem Fall ist [mm] g_{x}(v)=0, [/mm] aber ich verstehe noch nicht genau, was mir dieses x in der Indizierung sagt, wofür steht das?
Wenn ich es weiß, kann ich vielleicht begründen, wieso in f(x)=0 x der Nullvektor sein muss. Also dass es der (Null)VEKTOR sein muss, ist mir klar, aber nicht wieso der NULLvektor.

lg


Bezug
                        
Bezug
Mono,Iso: Antwort
Status: (Antwort) fertig Status 
Datum: 07:30 Mo 13.12.2010
Autor: angela.h.b.


> > Heißt die Aufgabenstellung vielleicht ungefähr so:
>  >  
> > Seien K ein Körper und V ein K-Vektorraum.
>  >  
> > Sei
> > [mm]b:V \to V^{\*\*}[/mm] mit
>  >  v [mm]\mapsto b(v)[/mm] ,
>  >  
> > wobei
> >
> > b(v) [mm]\in V^{\*\*}=Hom_{K}(V\*,K)[/mm] mit
> > f [mm]\mapsto[/mm] f(v) für alle v [mm]\in[/mm] V, f [mm]\in V{\*}.[/mm]
>  
> Ja,so ist die Aufgabenstellung.
> >
> > >  

> > > a) Ich muss also zeigen, dass b eine lineare Abbildung
> > > ist und injektiv ist.
>  >  >  
> > > Bei der Injektivität hab ich mir gedacht, einfach zu
> > > zeigen, dass der Kern=0 ist, dann ist die Abbildung auch
> > > injektiv.
>  >  
> > Ja.
>  >  
> > >  Also sei x [mm]\in Kern(b).[/mm] Dann ist [mm]b(x)=0.[/mm]

> > Was bedeutet denn das? Es bedeutet:
>  >  
> > Für alle [mm]f\in V^{\*}[/mm] ist [mm][b(x)](f)=0_K,[/mm] also [mm]f(x)=0_k.[/mm]
>  >  
> > Und jetzt mußt Du einen Grund dafür finden, daß das x
> > der Nullvektor sein muß.
>  >  
> > Dazu kannst Du Dir überlegen, daß die Abbildung
> >
> > [mm]g_x: V\to[/mm] K
>  >  mit
> >
> > [mm]g_{x}(v):=\begin{cases} 0, & \mbox{fuer }v\not=x \\ 1, & \mbox{fuer } v=x \end{cases}[/mm]
>  
> >  

> > ein Element von [mm]V^{\*}[/mm] ist...
>  >  
>
> Ok,also ich weiß,dass b(v)=0 sein muss

Hallo,

hier fängt das Drama schon an: was meinst Du jetzt mit v?
Vielleicht Dein eigenes x, welches im Kern von b ist?


> und es ist [mm]g_x: V\to[/mm] K
> ein Element von [mm]V^{\*}.[/mm] Da f auch ein Element von [mm]V^{\*}[/mm]
> ist, ist doch f:V [mm]\to[/mm] K. Jetzt muss f(x)=0 sein

Von welchem f sprichst Du gerade?

> und es ist
> [mm]g_{x}(v)=0[/mm] für v [mm]\not=x.[/mm]
>  In unserem Fall ist [mm]g_{x}(v)=0,[/mm] aber ich verstehe noch
> nicht genau, was mir dieses x in der Indizierung sagt,
> wofür steht das?

Wenn Dich das x verrückt macht, dann laß den Index halt weg...


Schau Dir meine editierte Antwort an:

sofern [mm] x\not=0, [/mm] kann man es zu einer Basis B von V ergänzen.

Mein [mm] g_x [/mm] ist nun die lineare Abbildung aus dem V in den K, welche wie folgt definiert ist durch die Angabe der Werte auf der Basis B:

[mm]g_x(v)=\begin{cases} 0, & \mbox{fuer } v\in B\setminus\{x\} \\ 1, & \mbox{fuer }v=x \end{cases}[/mm]


> Wenn ich es weiß, kann ich vielleicht begründen, wieso in
> f(x)=0 x der Nullvektor sein muss.

Schon wieder f...


Der Gedanke ist der bereits ausgeführte:

Wenn x im Kern von b ist, ist $ [mm] b(x)=0_{V^{**}}. [/mm] $

Das bedeutet nach Definition von b:

für alle $ [mm] f\in V^{*} [/mm] $ ist $ [mm] [b(x)](f)=0_K, [/mm] $ also $ [mm] f(x)=0_k. [/mm] $

Wenn dies für alle Elemente von [mm] V^{*} [/mm] gilt, dann gilt es auch für die oben definierte Abbildung [mm] g_x, [/mm] denn sie liegt im Dualraum von V.

Und nun bekommst Du einen Widerspruch.

Also kann es nicht sein, daß [mm] x\not=0. [/mm]

Da bleibt nur: x=0.

Gruß v. Angela


> (Null)VEKTOR sein muss, ist mir klar, aber nicht wieso der
> NULLvektor.
>  
> lg
>  


Bezug
                
Bezug
Mono,Iso: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 12:55 So 12.12.2010
Autor: pelzig

Hallo,

> Dazu kannst Du Dir überlegen, daß die Abbildung
>
> [mm]g_x: V\to[/mm] K
>  mit
>
> [mm]g_{x}(v):=\begin{cases} 0, & \mbox{fuer }v\not=x \\ 1, & \mbox{fuer } v=x \end{cases}[/mm]
>  
> ein Element von [mm]V^{\*}[/mm] ist...

Die Idee ist ja richtig, aber dieses [mm]g_x[/mm] ist sicherlich nicht linear und auch nicht stetig (ich nehme an wir reden hier über stetige lineare Abbildungen). Was wir hier natürlich wollen ist ein Funktional [mm]g_x\in V^\*[/mm] mit [mm]g_x(x)\ne 0[/mm] (falls [mm]x\ne 0[/mm]). Dafür sollte man den Satz von Hahn-Banach benutzen.

Edit: Ich sehe gerade dass wir wahrscheinlich nur über den algebraischen Dualraum reden, d.h. [mm] $V^\*$ [/mm] ist einfach die Menge der linearen Abbildungen von V in den Körper, nicht notwendigerweise stetig. In diesem Fall kann man Hahn-Banach natürlich nicht einfach anwenden (wahrscheinlich haben wir ja jetzt eh nicht zur Verfügung), sondern man muss eine Basis [mm] $\mathcal{B}$ [/mm] von V wählen, die den Vektor x enthält (was natürlich auch nur geht wenn [mm]x\ne 0[/mm] ist und i.A. das Auswahlaxiom benötigt). Dann setzt man [mm]\tilde{g}_x:\mathcal{B}\to K[/mm] mit [mm] $$\tilde{g}_x(b)=\begin{cases}1&b=x\\0&\text{sonst}\end{cases}$$ [/mm] und betrachtet dann die eindeutig bestimmte lineare Fortsetzung [mm] $g_x$ [/mm] von [mm] $\tilde{g}_x$ [/mm] auf ganz V.

Gruß, Robert


Bezug
                        
Bezug
Mono,Iso: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 13:21 So 12.12.2010
Autor: angela.h.b.

Hallo,

danke für Deinen Hinweis.

Ich hatte offenbar nur die Hälfte dessen, was ich mir gedacht hatte, preisgegeben.

Gruß v. Angela


Bezug
                                
Bezug
Mono,Iso: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 13:40 So 12.12.2010
Autor: pelzig

Jetzt ist es fast richtig, aber auf einem kleinen Detail muss ich doch nochmal rumreiten: die Abbildung (in deiner Notation)
[mm]g_x(v):=\begin{cases}0&\text{falls }x\in B\setminus\{x\}\\ 1&v=x\end{cases}[/mm]
ist ja überhaupt nur auf B definiert, es macht daher keinen Sinn zu sagen [mm]g_x\in V^\*[/mm]. Was du meinst ist die lineare Fortsetzung von [mm]g_x[/mm] auf ganz [mm]V[/mm], also das

Prinzip der linearen Fortsetzung: Sind [mm]V[/mm] bzw. [mm]W[/mm] Vektorräume und [mm]\mathcal{B}[/mm] eine Basis von [mm]V[/mm], so gibt es eine Bijektion
[mm]\Phi:\operatorname{Abb}(\mathcal{B},V)\to\operatorname{Hom}(V,W)[/mm]

Man beachte, dass dieses Prinzip im falle von stetigen linearen Abbildungen für unendlich-dimensionale Vektorräume nicht mehr gilt, dann muss man sich mit Fortsetzungssätzen wie Hahn-Banach herumschlagen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]