matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMomenterzeugenden Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Momenterzeugenden Funktion
Momenterzeugenden Funktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Momenterzeugenden Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Do 04.10.2018
Autor: hase-hh

Aufgabe
Die Zufallsvariable X habe [mm] M_X(t) [/mm] = 1+ [mm] \bruch{1}{2}*e^t +\bruch{1}{6}*e^{2t} [/mm] als Moment-Erzeugendenfunktion.

Bestimmen Sie E(X) und Var(X).

Moin Moin,

ich habe im Internet gefunden, dass die k-te Ableitung von [mm] M_X [/mm] das k-te Moment ist mit t = 0.

Ist das richtig?

Wie müsste ich sonst vorgehen?


Erwartungswert

[mm] M_X [/mm] ' (t) = [mm] \bruch{1}{2}*e^t +\bruch{1}{3}*e^{2t} [/mm]

bzw. E(X) = [mm] \bruch{1}{2}*e^0 +\bruch{1}{3}*e^{2*0} [/mm] = [mm] \bruch{5}{6} [/mm]

[mm] M_X [/mm] ' ' (t) = [mm] \bruch{1}{2}*e^t +\bruch{2}{3}*e^{2t} [/mm]

bzw. Var(X) = [mm] \bruch{1}{2}*e^0 +\bruch{2}{3}*e^{2*0} [/mm] = [mm] \bruch{7}{6} [/mm]


richtig?






        
Bezug
Momenterzeugenden Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Do 04.10.2018
Autor: luis52

Moin, der Erwartungswert stimmt, die Varianz nicht. Es gilt [mm] $M''(0)=\operatorname{E}[X^2]$ [/mm] ...

Bezug
                
Bezug
Momenterzeugenden Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Do 04.10.2018
Autor: hase-hh


> Moin, der Erwartungswert stimmt, die Varianz nicht. Es gilt
> [mm]M''(0)=\operatorname{E}[X^2][/mm] ...

Heisst das, dass ich E(X) quadrieren muss?

[mm] (\bruch{1}{2}\cdot{}e^t +\bruch{1}{3}\cdot{}e^{2t}) [/mm] ^2    ??


Was ist hier denn überhaupt X? bzw. wie lautet die Ansatzgleichung???

Keine Idee!





Bezug
                        
Bezug
Momenterzeugenden Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Do 04.10.2018
Autor: fred97


> > Moin, der Erwartungswert stimmt, die Varianz nicht. Es gilt
> > [mm]M''(0)=\operatorname{E}[X^2][/mm] ...
>
> Heisst das, dass ich E(X) quadrieren muss?

Es gilt $Var (X)=E [mm] (X^2)-E (X)^2$ [/mm]

hilft  das ?

> ??
>  
>
> Was ist hier denn überhaupt X? bzw. wie lautet die
> Ansatzgleichung???

X ist eine Zufallsvariable

>  
> Keine Idee!
>  
>
>
>  


Bezug
                                
Bezug
Momenterzeugenden Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Do 04.10.2018
Autor: hase-hh


> > > Moin, der Erwartungswert stimmt, die Varianz nicht. Es gilt
> > > [mm]M''(0)=\operatorname{E}[X^2][/mm] ...

> Es gilt [mm]Var (X)=E (X^2)-E (X)^2[/mm]
>  
> hilft  das ?

Ok, aber wie kann ich [mm] E(X^2) [/mm]  mit den gegebenen Informationen formulieren?

Da ja offenbar, [mm] M_X [/mm] ' ' (0) nicht die Var(X) ist.


???

Bezug
                                        
Bezug
Momenterzeugenden Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Do 04.10.2018
Autor: luis52

[mm] $\operatorname{Var}[X]=M''(0)-[M'(0)]^2$ [/mm]

Bezug
                                                
Bezug
Momenterzeugenden Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:15 Fr 05.10.2018
Autor: hase-hh

Vielen Dank!

D.h.

Var(X) = [mm] \bruch{1}{2}*e^0 [/mm] + [mm] \bruch{2}{3}*e^0 [/mm] - [mm] (\bruch{5}{6})^2 [/mm]

Var(X) = [mm] \bruch{7}{6} [/mm] - [mm] \bruch{25}{36} [/mm] = [mm] \bruch{17}{36} [/mm]



Bezug
                                                        
Bezug
Momenterzeugenden Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:32 Fr 05.10.2018
Autor: fred97


> Vielen Dank!
>  
> D.h.
>
> Var(X) = [mm]\bruch{1}{2}*e^0[/mm] + [mm]\bruch{2}{3}*e^0[/mm] -
> [mm](\bruch{5}{6})^2[/mm]
>
> Var(X) = [mm]\bruch{7}{6}[/mm] - [mm]\bruch{25}{36}[/mm] = [mm]\bruch{17}{36}[/mm]
>  
>  

Jetzt stimmts !


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]