matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungMomentangeschwindigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Momentangeschwindigkeit
Momentangeschwindigkeit < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Momentangeschwindigkeit: nach Newton
Status: (Frage) beantwortet Status 
Datum: 20:21 Do 22.09.2011
Autor: qqqq14

Aufgabe
Stelle die Momentangeschwindigkeit nach Newton zeichnerisch dar.

Ich kann leider kein Koordinatensystem hier zeichnen ich versuche es aber zu formulieren.
Meine Frage wäre, gegeben sei ein Koordinatensystem mit einer Weg - Zeit Kurve. Stellt euch ein Punkt auf dieser Kurve vor ich möchte deren Momentangeschwindigkeit ermitteln.
Welche Hilfsmitteln brauche ich NACH NEWTON.
Hat er zunächst die Steigung der Sekante berechnet und es gegen die Tangentensteigung an diesem Punkt laufen lassen ? ( Sekante --> Tangente)

oder hat er nur eine Tangente durch diesen Punkt(P1) gezogen und auf dieser fortlaufenden Tangente einen anderen Punkt(P2) festgelegt und P2 gegen P1 laufen lassen

oder hat er einen anderen Punkt auf der Kurven genommen und den auf P1 nähern lassen?

ich hoffe ihr könnt mir helfen
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Momentangeschwindigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Do 22.09.2011
Autor: Fulla


>  Hat er zunächst die Steigung der Sekante berechnet und es
> gegen die Tangentensteigung an diesem Punkt laufen lassen ?
> ( Sekante --> Tangente)
>  
> oder hat er nur eine Tangente durch diesen Punkt(P1)
> gezogen und auf dieser fortlaufenden Tangente einen anderen
> Punkt(P2) festgelegt und P2 gegen P1 laufen lassen
>  
> oder hat er einen anderen Punkt auf der Kurven genommen und
> den auf P1 nähern lassen?

Hallo qqqq14,

ich denke es ist Letzteres:
Die Geschwindigkeit eines Teilchens/Körpers bekommst du über die Änderung des Ortes in einer bestimmten Zeitspanne, also [mm]v=\frac{\Delta s}{\Delta t}[/mm]. Das klappt aber nur bei konstanter Geschwindigkeit - das s-t-Diagramm ist also eine Gerade und du bestimmst das Steigungsdreieck.
Ändert sich aber die Geschwindigkeit, musst du anders vorgehen. Wie du schon beschrieben hast, nimmt man sich zwei Punkte [mm]P_1, P_2[/mm] auf der Kurve und betrachtet die Steigung der Sekante (mit [mm]\Delta s[/mm] und [mm]\Delta t[/mm]). Das ist zunächst jedoch ziemlich grob. Schaut man "genauer" hin - verkleinert also [mm]\Delta t[/mm] (und damit auch [mm]\Delta s[/mm]), nähert sich die Steigung der Sekante immer mehr der Steigung der Tangente an. Für [mm]\Delta t \to 0[/mm] gilt dann Gleichheit.

[]Hier unter Momentangeschwindigkeit findest du ein schönes Bild dazu.


Vielleicht weiß jemand anderes noch eine Anekdote aus der Geschichte dazu...?


Lieben Gruß,
Fulla



Bezug
                
Bezug
Momentangeschwindigkeit: Danke !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:18 Do 22.09.2011
Autor: qqqq14

DANKE SIE WISSEN NICHT WIE SIE MIR GEHOLFEN HABEN DAAAAAAAAAAAAANKEEEEEEEEEEEEEEEE !!!!!!!! :D

Bezug
                        
Bezug
Momentangeschwindigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 Do 22.09.2011
Autor: Fulla

Keine Ursache! Aber wir duzen uns hier im Forum :-)


Bezug
                        
Bezug
Momentangeschwindigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:09 Fr 23.09.2011
Autor: chrisno

kann ich die Frage nun auf vollständig beantwortet stellen?

Bezug
                                
Bezug
Momentangeschwindigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Fr 23.09.2011
Autor: M.Rex


> kann ich die Frage nun auf vollständig beantwortet
> stellen?

Ich war mal so frei, die Frage war ja eh schon überfällig.
Beim nächsten Mal kannst du solch offensichltichen Abschluss wie eine "Danksagung" als Aufforderung interpretieren, die Frage dann zu schließen. Man kann ja Rückfragen stellen ;-)

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]