matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungMomentane-und mittler Steigung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Momentane-und mittler Steigung
Momentane-und mittler Steigung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Momentane-und mittler Steigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Mo 06.02.2012
Autor: Fee

Hallo :) ,

Wisst ihr, was die momentane und die mittlere Steigung ist ? Und was ist deren Unterschied?

Dankeschön :)

Eure Fee

        
Bezug
Momentane-und mittler Steigung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Mo 06.02.2012
Autor: notinX

Hallo,

> Hallo :) ,
>  
> Wisst ihr, was die momentane und die mittlere Steigung ist
> ? Und was ist deren Unterschied?
>  
> Dankeschön :)
>  
> Eure Fee

ich glaube am einfachsten kann man das verstehen, wenn man die Steigung als Geschwindigkeit interpretiert, was physikalisch ja auch tatsächlich so ist:
Ist $s(t)$ die Strecke in Abhängigkeit der Zeit, so ist die zeitliche Ableitung gleich die Geschwindigkeit [mm] $v(t)=\lim_{t \rightarrow t_0} \frac [/mm] {s(t) - [mm] s(t_0)} [/mm] {t - [mm] t_0}=s'(t)=\frac{\mathrm{d}}{\mathrm{d}t}s(t)=\dot{s}(t)$. [/mm]
Damit berechnet sich die Momentangeschwindigkeit (momentane Steigung).
Die Durchschnittsgeschwindigkeit (mittlere Steigung) ist:
[mm] $\overline v=\frac{\Delta s}{\Delta t}=\frac{s_2-s_1}{t_2-t_1}$. [/mm]

Das ist der mathematische Unterschied, jetzt bringen wir noch ein wenig Anschauung rein.
Stell Dir vor, Du fährst mit den Fahrrad zur Schule. Die Entfernung ist z.B. 3,5km und Du brauchst dafür 10 min. Die durchschnittliche Geschwindigkeit ist dann, nach obiger Formel:
[mm] $\overline v=21\,\text{km/h}$ [/mm]
Aber tatsächlich fährst Du ja nicht in jedem Moment genau 21 km/h, sondern Du bist mal schneller, mal langsamer, bleibst vielleicht sogar mal stehen an einer Ampel, musst dann wieder beschleunigen usw...
Das wird bei der mittleren Steigung alles nicht berücksichtigt. Die Momentane Steigung dagegen gibt die Steigung zu jeder beliebigen Zeit an (bzw. an jeder beliebigen Stelle) an.

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]