matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenMoivre Formel und Kosinus
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Moivre Formel und Kosinus
Moivre Formel und Kosinus < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Moivre Formel und Kosinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:56 Do 01.05.2008
Autor: JanJan

Aufgabe
Man beweise mit

[mm] $(cos(x)+i*sin(x))^{n} [/mm] = cos(nx) + i*sin(x)$,

dass gilt:
$cos(nx) = [mm] cos^{n}(x) [/mm] - [mm] \vektor{n \\ 2} cos^{n-2}(x)sin^{2}(x) [/mm] + [mm] \vektor{n \\ 4} cos^{n-4}(x)sin^{4}(x) [/mm] - ...$

Hallo liebe Leute :)

Versuche jetzt schon ne weile das Problem zu knacken, finde aber leider nicht den richtigen weg :(

Ich mache folgendes:

$cos(nx) = - i*sin(nx) + [mm] (cos(x)+i*sin(x))^{n}$ [/mm]              jetzt kommt der binomische Satz:
[mm] $\gdw [/mm] cos(nx) = - i*sin(nx) + [mm] \summe_{k=1}^{n} \vektor{n \\ k} cos^{n}(x) sin^{n-k}(x)$ [/mm]
[mm] $\gdw [/mm] cos(nx) = - i*sin(nx) + [mm] cos^{n}(x) [/mm] + [mm] i*n*cos^{n-1}(x)sin(x) [/mm] - [mm] \vektor{n \\ 2} cos^{n-2}(x)sin^{2}(x) [/mm] - i [mm] \vektor{n \\ 3} cos^{n-3}(x)sin^{3}(x)$ [/mm]

ab hier komm ich leider nicht weiter :(

Es scheint ja so, als ob zu dem Kosinus alle geraden Potenzen gehören und zu dem Sinus alls ungeraden, aber mir will einfach kein weg einfallen mit dem ich die geraden von den ungeraden Potenzen trennen könnte...
Oder kürzen sich die ungeraden Potenzen einfach raus?
Muss ich gar den Taylor zu rate ziehen?

Habt ihr vllt einen Tipp?

mfg JanJan

        
Bezug
Moivre Formel und Kosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Do 01.05.2008
Autor: MathePower

Hallo JanJan,

> Man beweise mit
>
> [mm](cos(x)+i*sin(x))^{n} = cos(nx) + i*sin(x)[/mm],
>  
> dass gilt:
> [mm]cos(nx) = cos^{n}(x) - \vektor{n \\ 2} cos^{n-2}(x)sin^{2}(x) + \vektor{n \\ 4} cos^{n-4}(x)sin^{4}(x) - ...[/mm]
>  
> Hallo liebe Leute :)
>  
> Versuche jetzt schon ne weile das Problem zu knacken, finde
> aber leider nicht den richtigen weg :(
>  
> Ich mache folgendes:
>
> [mm]cos(nx) = - i*sin(nx) + (cos(x)+i*sin(x))^{n}[/mm]              
> jetzt kommt der binomische Satz:
>  [mm]\gdw cos(nx) = - i*sin(nx) + \summe_{k=1}^{n} \vektor{n \\ k} cos^{n}(x) sin^{n-k}(x)[/mm]
>  
> [mm]\gdw cos(nx) = - i*sin(nx) + cos^{n}(x) + i*n*cos^{n-1}(x)sin(x) - \vektor{n \\ 2} cos^{n-2}(x)sin^{2}(x) - i \vektor{n \\ 3} cos^{n-3}(x)sin^{3}(x)[/mm]
>  
> ab hier komm ich leider nicht weiter :(
>  
> Es scheint ja so, als ob zu dem Kosinus alle geraden
> Potenzen gehören und zu dem Sinus alls ungeraden, aber mir
> will einfach kein weg einfallen mit dem ich die geraden von
> den ungeraden Potenzen trennen könnte...
> Oder kürzen sich die ungeraden Potenzen einfach raus?
> Muss ich gar den Taylor zu rate ziehen?


Trenn Real- und Imaginärteil.

Der Realteil gibt die Formel für [mm]\cos\left(nx\right)[/mm], der Imaginärteil die Formel für [mm]\sin\left(nx\right)[/mm].

>
> Habt ihr vllt einen Tipp?
>
> mfg JanJan

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]