Möbiustransformationen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:16 So 04.09.2016 | Autor: | Anjuta |
Aufgabe | Sei [mm] $\varphi \in \textnormal{Aut} [/mm] (D)$, [mm] $\varphi\neq [/mm] id$. Dann gilt
Ist [mm] $\varphi$ [/mm] parabolisch und [mm] $z_0$ [/mm] ein Fixpunkt von [mm] $\varphi$. [/mm] Dann ist [mm] $z_0\in [/mm] S$ und [mm] $\varphi^n(z)\rightarrow z_0, \varphi^{-n}(z)\rightarrow z_0$ [/mm] für alle [mm] $z\in \hat\IC [/mm] $.
Dabei bezeichnet D den Einheitskreis, S den Rand von D und [mm] \hat\IC [/mm] die erweiterte Zahlenebene.
Beweis:
Hat eine parabolische Möbiustransformation [mm] \varphi [/mm] ihren Fixpunkt in [mm] $\infty$, [/mm] dann ist [mm] \varphi [/mm] eine Translation [mm] $\varphi(z)=z+c$ [/mm] für [mm] $c\neq0$. [/mm] Ist allgemein [mm] $z_0 \in \IC$ [/mm] ein Fixpunkt von [mm] \varphi, [/mm] dann bildet eine Möbiustransformation [mm] $\sigma$ [/mm] den Punkt [mm] $z_0$ [/mm] auf [mm] $\infty$ [/mm] ab, und [mm] $\psi:=\sigma\circ \varphi\circ\sigma^{-1}$ [/mm] hat ihren einzigen Fixpunkt in [mm] $\infty$, [/mm] also ist [mm] $\psi$ [/mm] eine Translation [mm] $\psi=z+c$ [/mm] für [mm] $c\neq [/mm] 0.
Dann ist [mm] \psi^n(z)=z+nc \to \infty [/mm] für alle [mm] z\in \hat\IC [/mm] und somit [mm] \varphi^n(z)\to \sigma^{-1}(\infty)=z_0 [/mm] für alle [mm] z\in\hat\IC. [/mm] Analog zeigt man, dass [mm] \varphi^{-n}(z)\to z_0 [/mm] für alle [mm] z\in\hat\IC [/mm] gilt. Da [mm] \varphi [/mm] S auf S abbildet, muss [mm] z_0 [/mm] in S liegen. |
Hallo zusammen,
die Aussage habe ich aus dem Buch Linear Chaos. Ich verstehe die letzte Schlussfolgerung nicht. Warum muss denn jetzt der Fixpunkt [mm] z_0 [/mm] in S liegen, also auf dem Rand vom Einheitskreis?? Die Abbildung [mm] \varphi [/mm] bildet ja auch D auf D ab. Das haben wir im Buch bereits gezeigt, [mm] \varphi [/mm] ist ja ein Automorphismus von D. Bitte bitte erklärt es mit.
Danke im Voraus
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:22 Di 06.09.2016 | Autor: | hippias |
Wenn Dir klar ist, dass $S$ auch unter [mm] $\phi$ [/mm] invariant ist, dann kannst Du so argumentieren: da [mm] $\phi^{n}(z)\rightarrow z_{0}$ [/mm] für alle Startwerte [mm] $z\in \IC$ [/mm] gilt, gilt dies auch insbesondere für [mm] $1\in [/mm] S$. Dann ist [mm] $\phi^{n}(1)$ [/mm] eine Folge mit Elementen aus $S$, die gegen [mm] $z_{0}$ [/mm] konvergiert. Da $S$ abgeschlossen ist, folgt [mm] $z_{0}\in [/mm] S$.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:21 Di 06.09.2016 | Autor: | Anjuta |
Daaaaaanke. Da hats bei mir gehangen.
|
|
|
|