matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisMöbiustransformation, DV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Möbiustransformation, DV
Möbiustransformation, DV < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Möbiustransformation, DV: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 01:22 Mi 13.05.2009
Autor: Denny22

Aufgabe
Man zeige, dass alle gebrochen linearen Transformationen, die die Einheitskreislinie in sich überführen, in der Form
     [mm] $S(z)=\frac{az+b}{\overline{b}z+\overline{a}}$ [/mm]
mit [mm] $a,b\in\IC$ [/mm] und [mm] $|a|\neq|b|$ [/mm] geschrieben werden können.

Hallo,

ich habe die Lösung meiner damaligen Übung vorliegen, kann sie allerdings nicht wirklich nachvollziehen:

[mm] $S^1$ [/mm] bezeichne den Einheitskreis in der komplexen Ebene. Betrachte das zu den Abbildungen gehörige Abbildungsdiagramm (Ich denke hier ist schon ein Fehler, da $T$ und [mm] $T^{-1}$ [/mm] nicht invers zueinander sind):
     [mm] $S:S^1\rightarrow S^1$ [/mm] gesucht
     [mm] $T:S^1\rightarrow\IR\cup\{\infty\}$ [/mm] mit [mm] $T(z)=\frac{z+1}{z-1}:\frac{i+1}{i-1}$ [/mm] (Doppelverhältnis)
     [mm] $S_g:\IR\cup\{\infty\}\rightarrow\IR\cup\{\infty\}$ [/mm] mit [mm] $S_g(z)=\frac{az+b}{cz+d}$ [/mm]
     [mm] $T^{-1}:\IR\cup\{\infty\}\rightarrow S^1$ [/mm] mit [mm] $T^{-1}(z)=\frac{z+i}{z-i}$ [/mm] (Inverse von T)
Beachte, dass $T$, [mm] $T^{-1}$ [/mm] und [mm] $S_g$ [/mm] gebrochen lineare Transformationen (Möbiustransformationen) sind. $S$ bestimmen wir nun durch die Komposition
     [mm] $S(z)=(T^{-1}\circ S_g\circ [/mm] T)(z)$
$S$ ist als Komposition von Möbiustransformationen wieder eine Möbiustransformation. Fassen wir die Möbiustransformationen mit Matrizenschreibweise auf, so erhalten wir $S$ durch
     [mm] $S(z)=(T^{-1}\circ S_g\circ T)(z)=\pmat{ 1 & i \\ 1 & -i }\pmat{ a & b \\ c & d }\pmat{ i & i \\ 1 & -1 }=\pmat{ b-c+i(a+d) & b+c+i(a-d) \\ -(b+c)+i(a-d) & -(b-c)+i(a+d) }=\pmat{ \alpha & \beta \\ -\overline{\beta} & -\overline{\alpha} }$ [/mm]
Fragen:
1) Woher weiß ich, dass ich ausgerechnet das obige (spezielle) Doppelverhältnis verwenden muss?
2)Wir komme ich vom obigen Doppelverhältnis auf die rechte der drei Matrizen?
3) Der Beweis liefert uns
     [mm] $S(z)=\frac{\alpha z+\beta}{-\overline{\beta}-\overline{\alpha}}\overset{?}{\neq}\frac{\alpha z+\beta}{\overline{\beta}z+\overline{\alpha}}$ [/mm]
und damit doch nicht die Behauptung, oder?

Es wäre schön, wenn mir jemand behilflich sein könnte.

Danke und Gruß

        
Bezug
Möbiustransformation, DV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 Mi 13.05.2009
Autor: Denny22

Kann mir niemand weiterhelfen?

Bezug
        
Bezug
Möbiustransformation, DV: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:20 Mo 18.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]