Möbiustransformation < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:57 Mi 18.01.2017 | Autor: | riju |
Aufgabe | Gegeben ist folgende Abbildung [mm] w=\bruch{j-z}{1+z} [/mm]
mit folgenden Kurven
a) [mm] x=0 [/mm] b) [mm] y=0 [/mm] c) [mm] x^2+y^2=1 [/mm]
Gesucht:
Funktionstyp?
Wie wirkt Funktion (Drehung, Streckung)?
Welche Kurven (Geraden, Kreise) werden auf welche Kurven abgebildet?
Berechnung des Bildes geeignet gewählter Punkte
Schlußfolgerung
Bestimmung der Gleichung der Bildkurve |
Hallo, ich komme mit a) und b) nicht klar.
Erstmal zu a)
Funktionstyp: ?
Wie wirkt Funktion (Drehung, Streckung): ? Woran erkenne ich das?
Welche Kurven (Geraden, Kreise) werden auf welche Kurven abgebildet: [mm] x=0 [/mm] ist ein Kreis mit unendlichem Radius und wird auf einen Kreis abgebildet
Berechnung des Bildes geeignet gewählter Punkte:
[mm] z_1=-j \to w_1=-1+j [/mm]
[mm] z_2=0 \to w_2=j [/mm]
[mm] z_3=j \to w_1=0 [/mm]
Außerdem habe ich noch [mm] z_n \to \infty: \limes_{n\rightarrow\infty} \bruch{j-z_n}{1+z_n}=-1 [/mm] errechnet. Diese Punkte ergeben für mich aber irgendwie keinen Kreis.
Schlußfolgerung:?
Gleichung der Bildkurve: Weiß ich nicht?
zu b)
Hier wollte ich auch 3 Punkte wählen und das dazugehörige [mm] w [/mm] berechnen. Aber was ist denn mit [mm] z=-1 [/mm]? dafür ist doch die Abbildung nicht definiert oder sehe ich das falsch?
zu c)
Da lautet meine Gleichung der Bildkurve: [mm](u+\bruch{1}{2})^2+(v-\bruch{1}{2})^2=\bruch{1}{2}[/mm]
Ist das richtig?
Vielen Dank im Voraus.
Liebe Grüße
riju
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:04 Mi 18.01.2017 | Autor: | leduart |
Hallo
zu b) Bild von y=0 also x- Achse Wenn Geraden in Geraden gehen wie die x- Achse, dann muss ja auch was gegen [mm] \infty [/mm] gehen , hier der Punkt (1,0) nach [mm] \infty, [/mm] dadurch weisst du, dass es eine Gerade ist. 2 weitere Punkte also x=0 und x=2 etwa geben dir die Gerade. geht
da auch der Kreis [mm] x^2+y^2=1 [/mm] durch x=-1 geht, muss also auch der in eine Gerade geben, da der Kreis auch durch j geht, geht die Gerade durch 0 ein weiterer Punkt und du hast sie
dein GW gegen [mm] \infty [/mm] liefert dir einen weiteren Punkt auf dem Kreis. do sollst allerdings eher y und nicht z->inftym das macht nicht viel Sinn,
der Kreis , den du hingeschrieben hast ist beinahe der Kreis, der aus der y Achse entsteht, nur der Radius ist falsch ,oder du hast statt [mm] r^2 [/mm] r geschrieben.
die Funktion bildet Geraden auf Kreise oder Geraden ab und umgekehrt.
durch 3 Punkte ist ein Kreis eindeutig festgelegt also kannst du ihn leicht finden , am Schnellsten durch zeichnen,
du kannst leicht sehen, welche Kreise in Geraden gehen wenn du an x=-1 denkst ebenso welche Geraden wieder in Geraden gehen. der Rest wird zu Kreisen.
Gruß ledum
Gruß leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:16 Do 19.01.2017 | Autor: | riju |
> Hallo
> zu b) Bild von y=0 also x- Achse Wenn Geraden in Geraden
> gehen wie die x- Achse, dann muss ja auch was gegen [mm]\infty[/mm]
> gehen , hier der Punkt (1,0) nach [mm]\infty,[/mm] dadurch weisst
> du, dass es eine Gerade ist. 2 weitere Punkte also x=0 und
> x=2 etwa geben dir die Gerade. geht
> da auch der Kreis [mm]x^2+y^2=1[/mm] durch x=-1 geht, muss also auch
> der in eine Gerade geben, da der Kreis auch durch j geht,
> geht die Gerade durch 0 ein weiterer Punkt und du hast sie
> dein GW gegen [mm]\infty[/mm] liefert dir einen weiteren Punkt auf
> dem Kreis. do sollst allerdings eher y und nicht z->inftym
> das macht nicht viel Sinn,
> der Kreis , den du hingeschrieben hast ist beinahe der
> Kreis, der aus der y Achse entsteht, nur der Radius ist
> falsch ,oder du hast statt [mm]r^2[/mm] r geschrieben.
> die Funktion bildet Geraden auf Kreise oder Geraden ab und
> umgekehrt.
> durch 3 Punkte ist ein Kreis eindeutig festgelegt also
> kannst du ihn leicht finden , am Schnellsten durch
> zeichnen,
> du kannst leicht sehen, welche Kreise in Geraden gehen
> wenn du an x=-1 denkst ebenso welche Geraden wieder in
> Geraden gehen. der Rest wird zu Kreisen.
> Gruß ledum
> Gruß leduart
>
Also habe ich das richtig verstanden:
Wenn die Kurve durch den Punkt geht, an dem w nicht definiert ist, geht die Kurve in eine Gerade über?
Wo liegt bei a) [mm] x=0 [/mm] mein Fehler?
Vielen Dank
riju
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:56 Do 19.01.2017 | Autor: | leduart |
Hallo
dein Fehler
z=-j wird auf 1+j nicht -1+j abgebildet
nicht jede Kurve sondern Kreise und Geraden, die durch den Punkt gehen für den |w|-> [mm] \infty [/mm] geht werden zu geraden,
das typische Verhalten einer Möbiustransformation kann man am besten an 1/z sehen, der Rest ist dann nur noch Verschiebung und Drehung.
Gruß leduart
|
|
|
|