matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesModulorechnung mit 2 Variabeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Sonstiges" - Modulorechnung mit 2 Variabeln
Modulorechnung mit 2 Variabeln < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modulorechnung mit 2 Variabeln: Wie beweise ich das?
Status: (Frage) beantwortet Status 
Datum: 23:37 Di 27.03.2012
Autor: KehxD

Guten Abend,

ich hänge derzeit an einem Beweis den ich für meine Seminararbeit eigentlich benötigen würde.

Zu beweisen ist:

Für:

[mm] x\in\IN\sub[/mm]
[mm] y\in\IN\sub[/mm]
[mm] x \le y [/mm]

[mm] y\ mod\ 4 \equiv (x\ mod\ 2) \* 2 [/mm]


Ist:

[mm] (3^x \* 2^{y-x}\ -\ 1)\ mod\ 5 \equiv 0 [/mm]


Ich versuche hier also nachzuweisen, dass die Formel unten stimmt, wenn sämtliche Bedingungen oben stimmen.
Bei $y\ mod\ 4 [mm] \equiv [/mm] (x\ mod\ 2) [mm] \* [/mm] 2$ erkennt man sofort, dass das nur Sinn macht für

[mm] y\ mod\ 4 \equiv 0\quad oder\quad y\ mod\ 4 \equiv 2[/mm]

da für

[mm] y\ mod\ 4 \equiv 1\quad oder\quad y\ mod\ 3 \equiv 2[/mm]

[mm] (x\ mod\ 2) \* 2 [/mm] niemals 1 oder 3 sein kann.


Und hier steh ich jetzt. Als Idee hatte ich das über Induktion zu beweisen, allerdings ist das schwer wie ich gemerkt habe. Natürlich könnte man das Trivial in 2 Modulo Funktionen spalten und beide für die Zahlen 1 bis 4 zeígen und es damit beweisen. (Wenn ich mich nicht täusche) Aber das Problem daran wäre, dass ich später versuche ähnliches zu machen, nur nicht eben nicht  x mod 5  , sondern dann Geschichten wie  x mod 101.  Das dann für sämtliche Zahlen 0 bis 100 zu beweisen wäre nicht sonderlich leicht noch schön. Deshalb frage ich hier ob es eine Möglichkeit gibt das über Induktion zu beweisen, beziehungsweise wie es funktioniert, da ich mir fast sicher bin, dass es funktioniet.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Modulorechnung mit 2 Variabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 06:11 Mi 28.03.2012
Autor: angela.h.b.


> Guten Abend,
>  
> ich hänge derzeit an einem Beweis den ich für meine
> Seminararbeit eigentlich benötigen würde.
>  
> Zu beweisen ist:
>  
> Für:
>  
> [mm]x\in\IN\sub[/mm]
>  [mm]y\in\IN\sub[/mm]
>  [mm]x \le y[/mm]
>  
> [mm]y\ mod\ 4 \equiv (x\ mod\ 2) \* 2 [/mm]
>  
>
> Ist:
>  
> [mm](3^x \* 2^{y-x}\ -\ 1)\ mod\ 5 \equiv 0[/mm]
>  
>
> Ich versuche hier also nachzuweisen, dass die Formel unten
> stimmt, wenn sämtliche Bedingungen oben stimmen.
>  Bei [mm]y\ mod\ 4 \equiv (x\ mod\ 2) \* 2[/mm] erkennt man sofort,
> dass das nur Sinn macht für
>
> [mm]y\ mod\ 4 \equiv 0\quad oder\quad y\ mod\ 4 \equiv 2[/mm]
>  
> da für
>
> [mm]y\ mod\ 4 \equiv 1\quad oder\quad y\ mod\ 3 \equiv 2[/mm]
>  
> [mm](x\ mod\ 2) \* 2[/mm] niemals 1 oder 3 sein kann.

Hallo,

[willkommenmr].

Daß $y\ mod\ 4 [mm] \equiv 0\quad oder\quad [/mm] y\ mod\ 4 [mm] \equiv [/mm] 2$ sein muß, stimmt.

Du könntest eine Fallunterscheidung machen:

1.Fall: [mm] y\equiv [/mm] 2 mod 4.
Dann muß [mm] x\equiv [/mm] 1 mod 2 sein.

Also gibt es k,l mit y=4k+2 und x=2l+1 ,
da [mm] x\le [/mm] y sein soll, muß [mm] 2k\ge [/mm] l sein.

Es ist
[mm] 3^{x}*2^{y-x}-1 [/mm]
[mm] =3^{2l+1}*2^{4k+2-2l-1}-1 [/mm]
[mm] =3*2*9^l*4^{2k-l}-1 [/mm]
[mm] =6*9^l*4^{2k-l}-1 [/mm]
(jetzt alle Zahlen mod 5:)
[mm] \equiv 1*(-1)^l*(-1)^{2k-l}-1 =(-1)^{2k}-1=1-1=0 [/mm] mod 5

Nun ähnlich den 2.Fall.

Worum geht es eigentlich? Was ist das Thema der Arbeit?

LG Angela


Bezug
                
Bezug
Modulorechnung mit 2 Variabeln: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:55 Mi 28.03.2012
Autor: KehxD

Vielen Dank, hat mir wirklich weitergeholfen. Damit kann ich weiterarbeiten. =)

Worum es geht ist recht komplex schriftlich in einen post zu packen. Kurz gesagt es geht um Teilbarkeitsbeweise in exponentiellen Räumen ^^ Natürlich nicht ganz ungezielt. Allerdings ist der Weg wie ich auf diese Fragestellung oben kam sehr schwer darzustellen. Verarbeiten muss ich das ganze in meinem W-Seminar für Mathmatik, auch wenn ich noch nicht ganz einen Namen für meine Seminararbeit habe.


Trotzdem hätte ich noch eine weiterführende Frage, was auch noch ganz angenehm wäre, wenn es irgendwie geht. Allerdings weiß ich nicht ob das möglich ist.

Ist es möglich den Beweis in einem Zug zu machen? Also gibt es eine Möglichkeit für einen Beweis ohne Fallunterscheidung?

Bezug
                        
Bezug
Modulorechnung mit 2 Variabeln: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 05.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]